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This report summarizes the result of research done under NASA

NAG3-882 Nonlinear Mechanics of Composites with Periodic
/" Microstructure. The program was carried out between 3/10/88 and

3/8/91 with Dr. A.D. Freed of NASA Lewis acting as grant monitor.

The effort involved the development of non-finite element

methods to calculate local stresses around fibers in composite

materials. The theory was developed and some promising numerical

results were obtained. It is expected that when this approach is

fully developed, it will provide an important tool for calculating

local stresses and averaged constitutive behavior in composites.

NASA currently has a major contractual effort (NAS3-26491) to bring

the approach developed under this grant to application readiness.

The following report has three sections. One, the general

theory that appeared as a NASA TM, a second section that gives

greater details about the theory connecting Greens functions and

Fourier series approaches, and a final section shows numerical

results.
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Summary

This work is concerned with modelling the mechanical deformation or constitutive behavior

of composites comprised of a periodic microstructure under small displacement conditions at

elevated temperature. A mesomechanics approach [1] is adopted which relates the microme-

chanical behavior of the heterogeneous composite with its in-service macroscopic behavior.

Two different methods, one based on a Fourier series approach and the other on a Green's

function approach, are used in modelling the micromechanical behavior of the composite

material. Although the constitutive formulations are based on a micromechanical approach,

it should be stressed that the resulting equations are volume averaged to produce overall

"effective" constitutive relations which relate the bulk, volume averaged, stress increment to

the bulk, volume averaged, strain increment. As such, they are macromodels which can be

used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or

in boundary element programs such as BEST3D.

In developing the volume averaged or "effective" macromodels from the micromechanical

models, both approaches (i.e. Fourier series and Green's function) will require the evalua-

tion of volume integrals containing the spatially varying strain distributions throughout the

composite material. By assuming that the strain distributions are spatially constant within

each constituent phase---or within a given subvolume within each constituent phase--of the

composite material, the volume integrals can be obtained in closed form. This simplified

micromodel can then be volume averaged to obtain an "effective" macromodel suitable for

use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user consti-
tutive subroutines such as HYPELA and CMUSER. This "effective" macromodel can be used

in a nonlinear finite element structural analysis to obtain the strain-temperature history at

those points in the structure where thermomechanical cracking and damage are expected to

occur, the so called "damage critical" points of the structure. The "exact" micromechanical

models can then be subjected to the overall "effective" strain-temperature history obtained

at the "damage critical" location and used outside of the finite element program to evaluate

the heterogeneous stress-strain history throughout each constituent phase of the composite

material. This variation must be known in order to evaluate the damage history variation

throughout each constituent phase of the composite material.

*Work funded by NASA Grant NAG3-882.
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1 Introduction

The ultimate objective of this work is to produce a computer program to analyze the hetero-

geneous stress and strain history variation at the "damage critical" locations of a composite

structure operating at elevated temperature. This report describes some of the theoreti-

cal foundations for the program. A mesomechanics [1] approach is adopted which relates

the micromechanical behavior of the heterogeneous composite to its in-service macroscopic

behavior.

Some composites are actually comprised of a periodic microstructure whilst others are

possessed of an essentially randomly distributed microstructure. Pictures of metal matrix

composites (tungsten-fiber-reinforced superalloys) which exhibit a periodic microstructure

are shown in Fig. 1 which is taken from the article by Petrasek et al [2]. When the fibers in a

composite material occupy a large volume fraction of the material, the induced deformation

in one fiber interacts with and alters the induced deformation in the neighboring fibers. When

the fibers are densely packed the interaction effect becomes dominant and must be accounted

for in the constitutive formulation.

At NASA-Lewis Chamis and his c0!!eagues [3,4,5] employ two different approaches for

analyzing the behavior of structural CoMposites. One method employs a sophisticated finite

element analysis of a periodic microstructure. A unit cell in the periodic microstructure is

modelled with one hundred and ninety two three-dimensional elements and the eight nearest

neighbor cells of the fibrous composite are modelled with superelements. By applying the

strain-temperature history at the "damage critical" location in the composite structure to

the supere]ement model, the stress-strain history throughout the unit cell can be computed

and used to estimate the maximum damage in the composite structure. This method will

necessarily require large resources in computer time and memory to analyze the viscoplastic

behavior of the composite structure under in-service thermomechanical loading conditions.

Another approach adopted by Chamis and his colleagues [3,4,5J--which avoids large com-

puter resources--is to employ composite micromechanics theory to derive simplified rela-

tionships which describe the thermomechanical constitutive behavior of multilayered fibrous

composites.

When suitable boundary conditions are applied to the superelement model of the periodic

microstructure, it is possible to predict the elastic properties of the equivalent homogenized

material. A comparison [5] with the homogenized elastic properties predicted by the simplified

micromechanical equations generally shows good agreement with the superelement model

except for the Poisson ratios. At high volume fractions (_ 60%) the longitudinal Poisson's

ratio for unidirectional fibers predicted by the simplified equations is about 15% too small,

whilst the transverse Poisson's ratio is about 30% too small. These anomalies occur because

the interaction between the fibers is not accounted for in the simplified micromechanical

model. This may be important when considering the highly nonlinear behavior of viscoplastic

composites at elevated temperature.

Dvorak [6] and Dvorak and Bahei-E1-Din et al [7,8,9] have also made great progress in

modelling the micromechanical behavior of nonlinear composite materials and are embarked

on a combined experimental and theoretical effort. The variation of the stress-strain history

throughout the unit cell of a periodic microstructure is obtained with a finite element analysis

in which the interaction effects of the surrounding cells is accounted for by applying periodic



boundary conditions to the surfaceof the unit cell.
Work on the theoretical foundations behind the homogenizationof micromechanicalcon-

stitutive modelsto producebulk macroscopicmodelshasbeenunder way in Pranceby Devri_s
and L6n6 [10], L6n_ [11,12],Duvaut [13], Renard and Marmonier [14], L6n_ and Leguillon
[15] and Sanchez-Palencia[16,17]. These referencesgive a good account of the work be-
ing conducted in Franceby other researchers.Much of this work is founded on the useof
multivariable asymptotic techniques [18]. In an infinite periodic structure the stress-strain
history in eachunit periodic cell is, perforce, identical. Due to the finite sizeof the compos-
ite structure the effectsof surface tractions and displacementson the surfacewill causethe
stress-strain history to vary from cell to cell. If the unit cell is much smaller than the size
of the structure this variation from cell to cell will be small. If L is a typical dimension of

the unit periodic cell and D is a typical dimension of the composite structure, then the ratio

LID is a small parameter of the problem. The displacement variation throughout the unit

cell will then depend on six spatial variables, i.e.,

= (Xl,X2,x3,

where x_ = xiL/D. The spatial variables x_ take into account the slow variation of the

displacement from cell to cell due to the finite size of the ratio LID when ui is a periodic

function of the variables xi. By expanding the displacement and other spatial variables of the

probiem into a series in powers of L/D and equating like powers in the perturbation expansion,

it is possible to obtain the effect of the finite size of the structure on the deformation behavior

in the unit cell. Due to the perturbative assumption of small LID this method is not expected

to be valid for thin composite sections or to be applicable at those places in the structure

where surface effects or nonperiodic inclusions are important.

Rather than employing finite element techniques to determine the stress-strain history

variation throughout the unit periodic cell, Aboudi [19] has recently developed a macro-

scopic formulation for periodic composites based on volume averaging a viscoplastic consti-

tutive model over the unit periodic cell. This work expands the heterogeneous displacement

throughout the constituent phases of the unit cell as linear and higher order functions of the

coordinates. Good agreement with experimental results was achieved by volume averaging

Bodner's [20] viscoplastic constitutive model over the unit periodic ceil, but the method is

general and any constitutive model may be used to represent the deformation behavior of the

constituent phases. The limitation here is that large spatial gradients in the strain history

may not be accurately modelled by linear or quadratic interpolation functions on the unit

periodic cell.

Weng and his colleagues [21,22] have employed self-consistent methods to study the effect

of inclusion size and volume fraction on the stress distribution in and around spheroidal

inclusions embedded in an "effective" non-uniform matrix material, and the effect which this

has on the overall "effective" macroscopic constitutive behavior of the composite. In the

first paper they point out that the derivation of the fictitious body forces which represent

the inelastic behavior of the heterogeneous composite material should be obtained from first

principles rather than using their heuristic approach. In the second paper the Mori-Tanaka

theorem [24] is used to represent the effect of the heterogeneous composite, and a similar

procedure is followed in the present work to develop a self-consistent method for composites

which exhibit a periodic microstructure. In addition, the present report also derives the
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fictitious body forces for a periodic microstructure from first principles. In reference [23]

Zhu and Weng have used a combined micromechanics and continuum theory approach to

develop a creep deformation model for particle-strengthened metal matrix composites. They

stress the fact that the creep resistance of the composite is underestimated when simplified

metallurgical and mechanics approaches are adopted.

A comprehensive application of micromechanics to mechanical deformation problems is

Mmromechanics of Defects in Solids". This work was used bygiven by Mura [24] in his book " "

Nemat-Nasser and his colleagues who have exploited the mathematical simplicity of a periodic

microstructure in order to develop elastic_ plastic and creep constitutive models [25,26,27,28]

for composite materials. The assumption of periodicity allows the heterogeneous stress, strain

and displacement fields to be expanded in a Fourier series, which greatly simplifies the ensuing

computations. This technique fully accounts for the interaction effects between neighboring

fibers. Even when the composite is comprised of closely packed fibers distributed at random

the method gives accurate results [25] for the "effective" elasticity tensor. When densely

packed fibers form a large volume fraction of the composite material these interaction effects

play a dominant r61e and must be included in the calculations. It appears that inclusion of the

interaction effects can be as, or more, important than inclusion of the random nature of the

microstructure when the fibers occupy a large volume fraction of the composite material. In

this report we have developed the Fourier series approach in order to handle the viscoplastic

behavior of the constituents in the unit periodic cell.

The nonlinear constitutive behavior of composites with a periodic microstructure can also

be treated with a Green's function approach [29,30,31,32,33]. Here, the periodic heteroge-

neous material property variation--due to the fibers--is treated as a fictitious body force in

the matrix material. The Green's function is used to evaluate the displacement due to a unit

point force in the matrix material and the actual displacement at any point in the composite

can then be determined by summing (integrating) the effect due to a volume distribution

of fictitious periodic body forces. It is shown in Appendix B that this method is exactly

equivalent to the Fourier series approach by invoking a mathematical technique known as the

Poisson sum formula. The Green's function approach is more general in that the method can

also handle the nonperiodic case where there may be inclusions in one unit cell but not in

the neighboring cells. It is also able to handle surface effects, although the surface integrals

which represent the surface effects in the Green's function method could be expanded in a

Fourier series for thin composite sections.

The approach adopted in the present work is to develop homogenization techniques which

can provide simplified macromodels for use in a nonlinear finite element program, similar in

spirit to the simplified models used at NASA-Lewis, but which account for the viscoplastic

interaction effects in the periodic structure and which allow surface effects for thin struc-

tures to be taken into account. Once the strain-temperature history at the "damage critical"

location has been found from the finite element analysis, it can be used to "drive" the mi-

cromechanical relations in order to obtain the stress-strain history variation throughout the
unit cell. These micromechanical relations are the same relations which are used to obtain

the simplified homogenized constitutive model. When the unit cell is chosen to have the form

shown in Fig. 2, it is clear that a periodic arrangement of such a microstructure allows for

the analysis of laminated composite structures.

3



2 Overview of Theoretical Modelling Approaches

2.1 Outline of Approach

In order to develop a homogeneous macroscopic constitutive model from micromechanical

principles it is necessary to know the stress-strain history throughout the unit cell of a periodic

composite. Some of the approaches which are presently being given currency are described
in the introduction.

The Fourier series and Green's flmction approaches can be used to compute the viscoptas-

tic stress-strain history throughout the unit cell of a periodic composite and can be simplified

to produce a model suitable for use in a nonlinear finite element program. In this report

the Fourier series and Green's function approaches are developed and shown to be equivalent

to each other by means of the Poisson sum formula. This equivalence holds only for an in-

finitely extended medium. When the medium has a finite size the effect of spatially varying

displacements and tractions on the surface of the medium must be accounted for. This is

easily accomplished with the Green's function method by retaining the appropriate surface

integral contributions which are discarded in the case of an infinite medium. In the Fourier

series approach the surface integral could be included, and, in the case of a thin composite

section which has an infinite surface the integral can be expanded into a Fourier series, in

fact, the methods can be combined, so that if inclusions are present in one unit cell and not

in the neighboring cells, their effect can be taken into account in the Fourier series method

by treating them with a Fourier integral or Green's function approach.

An overview of the present work is depicted in Fig. 3. Simplified versions of the mi-

cromechanical constitutive equations can be volume averaged to produce a macroscopic ho-

mogenized viscoplastic model. This can then be used in a nonlinear finite element program

to analyze the structural behavior of a composite structure under in-service thermomechan-

ical loading conditions. The finite element analysis yields the strain-temperature history at

the "damage critical" location and this history can then be applied to the micromechanical

equations to determ{ne the heterogeneous stress-strain history throughout the unit cell.

A detailed flow chart in Fig. 4 shows the anticipated structural analysis procedure. Both

the Fourier series and Green's function approaches can be used to create a coarse subvolume

model. This coarse model can then be homogenized and included in a user defined constitutive

subroutine in a nonlinear finite element program. The Green's function approach can also be

used to derive a simple self-consistent model for use in the user subroutine.
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2.2 Homogenized Macroscopic Equations

A periodic composite material is supposed acted upon by an imposed strain increment A¢°j

and responds in bulk with a stress increment Aa °. These values are then equated to the

respective volume averaged quantities in order to obtain the "effective" constitutive relation

for the composite material, i.e.,

Aa ° ----1///Aa_j(r)dV(r) and A¢°j 1 T= vff/Acij(r)dU(r)
V V

(1)

where V is the volume of the body.
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In section 4 it is shown that the volume averaged or "effective" constitutive relation for

the composite material can be written as

1

Aa°j = D %Ae°,-<fff {DijmktAekl(r)- 6Dijkl (r)[AcT (r) - Ack, (r)]} dV(r) (2)
V_

where V_ is the volume of a unit periodic cell in the composite material, AcT(r) is the total

strain increment at point r in the periodic cell due to the imposed uniform total strain

increment Ae°z at the surface of the composite, and Ackz(r) is the strain increment at point

r in the periodic cell representing the deviation from isothermal elastic behavior. The fourth

rank tensor _Di_kl(r) is defined by the relation

6Dijkt(r) = t0(r)(D_.k,- Di3_k_) (3)

where to(r) = 1 in the fiber and to(r) = 0 in the matrix, with D_k z denoting the elasticity

tensor of the fiber and Dijmkt that of the matrix.

In the expression for the average or "effective" constitutive relation in equation 2, the

quantities Ae°z, Dij_z and 5D_jk_(r) are given. The deviation strain increment Ack_(r) can

be obtained throughout the periodic cell as a function of position r by using an explicit

forward difference method since the stress and state variables in a viscoplastic formulation

will be known functions of position at the beginning of the increment. Everything is therefore

known explicitly except the total strain increment AcT(r).

2.3 Fourier Equation Overview

In the Fourier series approach described in section 4 we find that the total strain increment

is determined by solving the integral equation,

1 4-oo r

np=O

×/f/e i¢'(r-r') {Dijm_sAc_(r ') -6Dijrs(r')[AET s (r')- Acts (r')] } dV(r')
V_

(4)

where the fourth rank tensor gkzij ((:) is given by

1 (¢j¢liik 1 (¢) -{- CjCkMill (¢)) (5)

in which the Christoffel stiffness tensor Mij ((:), with inverse Mi_ 1 ((_) is defined (cf. [33]) by

the relation,

Mij (¢) = D_3qCp_q (6)

with _p = _p/_ = _p/_ being a unit vector in the direction of the Fourier wave vector _,

and _ = x/_-_,_ denoting the magnitude of the vector _. In equation 4 the sum is taken over

integer values in which
2_rnl 2_rn2 2_rn3

6- , , 6- (7)
L1 L2 L3

5
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and L1, L2, La are the dimensions of the unit periodic cell in the Xl, x_, x3 directions, so that

V_ = L1L2La. The values of nl, n2, na are given by

nv=0,+l,+2,+3,...,etc., forp=l,2,3 (8)

and the prime on the triple summation signs indicates that the term with n_ = na = n3 = 0

is excluded from the sum.

Green's Equation Overview

In the Green's function approach the total strain increment A_Tl(r ) is determined by solving

a different integral equation, viz.,

fff
AeT(r) = Ae °, +///Uk,.._ (r - r')/[D_n_.Ac_. (r')-

v

-5Dm_,8 (r')[AgTs (r')- Ac,._ (r')] } dV(r') (9)

where the fourth rank tensor Uklm_ (r - r') gives the kl component of the total strain incre-

ment at point r due to the mn component of a stress increment applied at point r' in the

infinite matrix with elasticity tensor D_n,._, i.e.,

1 (02Gk,..(r___r ')
Uk,,.n (r - r') = -2 \ Ox, Oxn 02G,_ (r - r')) (10)+ ;)xkOx,_

and the volume integration in equation 9 extends over all the periodic cells ill the composite

material, i.e., over the entire composite.

The Green's function tensor is defined in Appendix A, equation A.26, by the Fourier

integral [24,32,33]

f?f dag e-iK'(r-r') (11)
]_,lff 1 (¢)

Gij (r - r') = (2rr)a K2

in which the tensor _ is now defined by the relation _i = Ki/K with K = _ denoting

the magnitude of the vector K = (K1, Ks, K3).

In Appendix B it is shown, by applying the Poisson sum formula, that equations 4 and 9

are identical, although the summation extends over the integer values nl, n2, n3 in equation 4

and extends over the periodic cells in equation 9.

2.5 Integration of the Equations

Both equations 4 and 9 are implicit integral equations for the determination of the total strain

increment Aer(r), since this unknown quantity appears both on the left hand sides of the

equations and on the right hand sides under the volume integrations.

The "effective" constitutive relation given in equation 2 and the total strain increment

relation, given by either equation 4 or 9, contain the volume integration of the deviation

strain increment Ackl(r). In the periodic cell the deviation strain increment at any point r
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will be determined from a unified viscoplastic constitutive relation [34] appropriate to the

constituent phase in which the point r resides. If a constituent phase is included at the fiber-

matrix interface, a constitutive relation can also be proposed for this phase, and the resulting

inelastic strain increment determined for inclusion in the volume integrals. This may be

important for metal matrix composites where there can be chemical reactions between fiber

and matrix at elevated temperatures, and for composites where the fiber has been coated to

enhance overall composite properties.

Equations 2, 4 and 9 form the basic incremental constitutive equations for determining the

"effective" overall deformation behavior of a composite material with a periodic microstruc-

ture. In order to update the stress state in each of the constituent phases in preparation

for integrating the "effective" constitutive relation over the next increment, the constitutive

relation,

Aa_j(r) = Diykl(r) (AcT(r)- Ack,(r)) (12)

is used, where Dijkt(r) = D_.kl or Dij_t according as the point r is in the fiber or matrix.

This relation is used to update the stress a_j(r) and, in turn, the internal viscoplastic state

variables qi(r) at each point r in preparation for computing Ackl(r) in the next increment.

The derivation of the preceding equations and some methods for their solution are dis-

cussed in the succeeding sections of this report. Numerical solutions will be obtained during

the research effort from appropriate FORTRAN computer programs.

3 Periodic Microstructure

3.1 Volume Averaging

The periodic composite is supposed acted upon at its surface by a spatially linear displacement

increment, Au°(r), given by

Au°(r) = xjAs°j + xjAw ° (13)

where Aei ° and Aw ° are the spatially uniform strain and rotation increments at the surface
of the composite.

If the matrix material was homogeneous and had no fibers embedded in it, the strain

increment would be homogeneous and given by

1(0( Au° ) 0(Au°) _

+ ] (14)

Since this is constant, we may trivially volume average A_°j over the volume V of the homo-
geneous matrix material to obtain

Acoj =_///__1u 1 /0(Au°(r))0xj + 0(Au°(r)))0x_ dV(r)
(15)

which, by Gauss' divergence theorem, may be written as

1 ni(r)Au°(r)) dS(r)AE°j = _ // ½ (nj(r)Au°(r) +
S

(16)

7
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where the integral extends over the surface of the material and ni(r) denotes the outwardly

directed unit normal vector at point r on the surface. Thus, by applying the displacement

increment Au°(r) in equation 13 over the surface of the material to produce the surface strain

increment given in equation 16, equations 15 and 16 show that the strain increment in the

matrix material is spatially uniform.

If the displacement increment Au°(r) in equation 13 is applied to the actual composite

material, the total displacement increment within the material, AuT(r), will vary in a periodic

manner due to the assumed geometric periodicity of the composite material, so that

AuT(r) = Au°(r) + Au,(r) (17)

where Au°(r) is the displacement increment which would be induced in the homogeneous

matrix if the fiber phase were absent, and Au_(r) is the perturbation or deviation from the

homogeneous value due to the presence of the fibers.

Corresponding to these displacement increments, the total strain increment at any point

r in the composite, Ae_(r), is given by the relation

AcT(r) = Ae°l + Asks(r) (18)

where

1 ('0(Au °) 0(Au°)) 1 (0(Aua) 0(Au,)_Ae°l = 2 \ Oxt + Ox-----_ and /kgk/(r ) _- _ \ Oxl + _ ] (19)

with Ae_l representing the spatially constant total strain increment which would be produced

on the surface and in the interior of the homogeneous matrix if the fibers were absent, and

Asks(r) representing the deviation from the uniform value due to the presence of the fibers.

Both the total strain increment AeT(r) and the perturbed strain increment Aekt(r) vary

throughout the composite in a periodic manner.

We define the volume averaged stress and strain increments as Aa ° and Aei °, respectively.

The required "effective" constitutive equation for the composite material is then an expression

relating the volume averaged stress and strain increments. For a function f(r) which varies

with position the volume average is defined by the relation

(f) = l fff f(r)dV(r) (20)
V

Since the composite is assumed to be comprised of a periodic aggregate of identical unit cells,

we may write

(f} = -_ff/f(r)dV(r) (21)
Vc

where V_ denotes the volume of the unit periodic cell.

If we volume average the total strain increment in equation 18, we obtain

(Ae_) = -_/// AeT (r) dV (r) = Ae°kt + _--_/// Aekt(r) dV (r)
v_ vc

(22)
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or

= + (23)

But the volume averaged total strain increment is defined as A¢°t, so that (A¢_/= A¢° l and

=0 (24)

which shows that the volume averaged perturbation strain increment, Aekz(r), is equal to

zero.

3.2 Eigenstrain and Deviation Strain Increments

If the elasticity tensor is denoted by D_jkl(r) and the inelastic strain tensor by then

the constitutive equation at any point r in the composite material can be written as

aij(r) = D,jk_(r) @T(r) -- eP(r) -- ak,(r)(T - To)) (25)

where akl (r) is the coefficient of thermal expansion.

The incremental form of Hooke's law is

Aai_(r) = Dijkl(r) (A¢T(r)- Ack,(r)) (26)

where Ackt (r) denotes the incremental strain representing the deviation from isothermal elas-

tic conditions and is given by

Ackl(r) = AsP(r) + ct_l(r)AT (27)

in which

c_]¢,(r)AT = c_kl(r)AT + (T - To) Ac_kz(r) --

-- D_/lj(r) ADijmn(r) @Tn(r ) -- SPmn(r) -- C_m_(r)(T - To)) (28)

is the nonisothermal increment in strain. The tensors AD_jkl(r) and Ac_kt(r) represent the

incremental changes in the elasticity and thermal expansion tensors due to the temperature

increment AT.

In a unified viscoplastic constitutive formulation [34] which is integrated by an explicit

forward difference method, the inelastic strain increment AeP(r) is a function of the current

stress (at the beginning of the increment), aij(r), and the current values of the internal

viscoplastic state variables, qi(r). For example, if

gP = f_j (a_,,q_) (29)

then Ae P = f_j (a_,q_)At, and the inelastic strain increment is independent of the total
strain increment Aer(r). This independence of the inelastic strain increment on the total

strain increment is no longer true if an implicit integration method (e.g. backward difference)

or subincrementation method is used.

The elasticity tensor Dijkl(r) may be written as

Dijkl(r) = Di3_t + 5Dijkz(r) (30)

9
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where

5Dijk,(r) = 0(r)(D_.kt- Domk,) (31)

and 0(r) = 1 in the fiber and 0(r) = 0 in the matrix, the superscripts f and m referring to

the elasticity tensor of the fiber and matrix, respectively. The constitutive equation at any

point r can then be written, from equation 26, as

Aa0(r ) = (Dij_l + 5Diyk_(r)) (Ae°kt + Aekl(r)- Ackt(r)) (32)

or

Aaij(r) = Dij_l (Ag° t + Aekl(r)) --

--{DijmktAckt(r)--SDijkt(r)[Ae°t+Aekt(r)--ACkt(r)] } (33)

If the quantity in braces is set equal to Dij_tAc_l(r), that is, if

Dij_lAs*kt(r) = Dijmk,Ackt(r) - 5Dokt(r) [Ac_l + Askl(r) -- Ackl(r)] (34)

then equation 26 can be written in the form,

A_ro(r ) = D,'_k , (Ac_(r) - A¢;,(r)) = Dij_, (As °, + Acat(r)- Ae_,(r)) (35)

From the preceding equation it is evident that the eigenstrain increment, Ac_l(r), represents

the incremental deviation from isothermal elastic behavior in the composite material when

the elasticity, tensor is taken to bc a spatially constant tensor appropriate to that of the

matrix phase.

Newton's law for continuing static equilibrium throughout the strain increment requires
that

Equations 35 and 36 then require that

or, if As° l is constant,

0(Aa j(r)) =0 (36)
Oxj

O{D,_k, (Ae_, + Aek,(r) - Ae_,(r)) }

Oxj
=0 (37)

0(Aekt(r)) 0(Ae_t(r)) (38)
Dijkl OXj -- Dijmkl OXj

4 Fourier Series Approach

4.1 Fourier Expansions

The application of Fourier series to the calculation of the "effective" overall constitutive

behavior of periodic composites has been dealt with in detail by Nemat-Nasser and his col-

leagues [25,26,27,28]. This work is used in this section to develop constitutive relationships

for viscoplastic composite materials ufider small displacement conditions.
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Due to the geometric periodicity of the composite we may expand Auk(r) and Ae_l(r ) in

a Fourier series (cf., for example, Appendix 3 of Mura's book, [24]). This gives

±oo 4-c¢ +_ 2wnl 2rn2 2_n3

Auk(r) = _ _ _-_' Agk(nl,n2, n3)e i(-L--_l_+-'Z-_-'2x2+_3}

nl=0 n2=0 n3=0

(39)

where L1, L2, L3 are the dimensions of a unit cell in the Xl, x2, x3 directions. The coefficients

A_k in the Fourier expansion are determined by multiplying each side of equation 39 by
[ 2_rrn1 27rrn2 2rrrn3 \

e-i[, --E-1 =z+--Z_2 =2+--LT=3) and integrating over the volume of the unit cell to give

L1 L2 L3 ( 2rnl 2_n2 2_n3
1 / / / Auk(r)e -i _-I-'l x'+--L--_2 x2+--F_ x3) dXl dx2 dx3

A_k (nl, n2, n3) -- Ll_2L31=o x2=o _3=0
(40)

where only the terms with rni = ni survive in the summations.

Equations 39 and 40 can be written in shortened form as

AUk(r) -----E E E' A_k (_) eit_'r (41)

np=O

with coefficients A_ (t_) determined by the inverse relation

A_t_ (_) = _c///Auk(r)e-_I r dV(r) (42)

where

with

---- (_I,_2,_3) , r = (X_,X2, X3), V_ = L,L2Lz

2un_
_ - (no sum on i) for i = 1, 2, 3.

Li

The strain increment Ag_(r) can also be expanded in a Fourier series to give

(43)

(44)

-{-OO

A£_d(r) = E E E' A_k*/(_) ei_'r (45)

np=O

with coefficients Ag_t determined by the inverse relation

V_

(46)

In equations 41 and 45 the prime indicates that the term with n_ = n_ = n3 = 0 is excluded

from the summations, since A_t_ (nl = 0, n2 = 0, n3 = 0) represents a rigid body displacement

increment and A_*_ (nl = 0, n2 = 0, n3 = 0) represents a spatially uniform strain increment.

11
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4.2 Equilibrium Equation

By substituting equation 41 into equation 19; equation 19 into the left hand side of equation

38; and equation 45 into the right hand side of equation 38, the equilibrium relationship
becomes

±_-_/1 ( )nij_kt _ _ _ A_2k (() _t(j + Aftt (5) &(j e i{r =
np=O

+_

-zDijktE E E' ^*
np=O

or

Dij2t{t{iAfik ({) = -iDi32t{jAgk*t ({) (47)

If _ = _ denotes the magnitude of the vector {, a unit vector _ in the direction of { can

be written as & = (i/{. Equation 47 can therefore be written in the form,

{ Dijk_ A_k (_) = --zDijkl_jmCkl (_)

or

{2 (Dijr%i_t_j) A_tk (() = --io_jmkt{jAgk*l ({) (48)

The second rank tensor,

M,k ({) = }lk, (i) = Dij2,ft_j (49)

is called the Christoffel stiffness tensor (cf. [33]) and equation 48 can be written as

{2M_k ({_) A_2k ({) = -iDi32_(jAg_* _ ({) (50)

This equation can be inverted by premultiplying each side by the inverse tensor {-2M-1 to

give the Fourier expansion coefficients

Afik ({) = -iMi;' (_) Di3_{jAg_; ({) {-: (51)

The expansion coefficients can now be substituted into the Fourier expansion of Z_uk(r) in

equation 41 to give

=l=co

Auk(r) = - _ _ _'i_-2M/£ 1 (_) D_j,._(3Ag_ ({)e _er (52)
np=O

This result may now be substituted into equation 19, so that the perturbation strain increment

may be written as

Aekt(r)=_--2_-2_--2'_ {-2M_({_){j{t+{-2M_t-_({D{3{k D_L, Ag_*_ ({) e i{r (53)
np=O

If we define the fourth rank tensor gkuj (_) by the relation

I
(¢)¢£,+ MJ (¢)¢£0 (54)
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then the perturbation strain increment can be written in the form

+co

= Z Z E' g "J(¢)DYj.  :s ei r (55)
rip=0

and by inserting the relation for the Fourier expansion coefficients Agr*_ from equation 46, we

obtain +oo

1Ackl(r) = _ _ E gkuj (4) f//Dij_rsA_*_ (r')e i¢(r-r') dY(r') (56)
np=O Yc

where the integration extends over the volume, V_ = L1L2La, of the unit periodic cell.

From equation 18 the total strain increment is given by

1 +oc j//AcT(r) = Ae°l + _ _ _ _-_'gkuy (4) DiiL,As*_ (r')e ie(r-r') dV(r') (57)
np =0 V_

which, from the definition of Dij%_A¢_ (r') in equation 34, may be written in the final form,

1 +oo f//AET/(r) = A£°kl -_- Ycc _ _ _'gklij (4) e i_'(r-r') {Dij_Ac,_ (r') -
np =0 V_

- 6Dij_ (r')[AcTs (r') -- Ac_ (r')] } dY(r') (58)

This implicit integral equation--equation 4 in section 2.1--must be solved to yield the total

strain increment Ac_(r) at each point r in the unit periodic cell.

Instead of solving for Ac T (r) from this implicit integral equation, we could use equation 34

to eliminate A_T(r) from equation 57 to give an equivalent integral equation for AE_ct(r ), viz.,

Di_klAC*kl(r) = DijmkiACkl(r) -- _Dijkl(r) [AeOkl - ACkl(r)] --

- 5Dokz(r) _ _ _'gkt,,_ (4) D_Ae;s (r')e i('(r-r') dV(r') (59)

up=0 V_

The incremental constitutive relation at any point r is given in equation 35, and this

relation can be used to update the stress state at any point r in the unit cell once equation 59

is solved for Ae_l(r ). Alternatively, equation 58 can be solved for Ae T (r) and inserted into

equations 34 and 35. The overall "effective" constitutive relation for the composite material

can be obtained by averaging equation 35 over the unit periodic cell. This gives

or

= DoktAek_ + Dijkl Dokl

If we equate the volume averaged stress increment (Aa0. } and the overall bulk response stress

increment Aa °, i.e., if {Aa0) = Aa°j ., and we note from equation 24 that the volume averaged

perturbation strain increment is zero, i.e. (A_k,) = 0, then the overall "effective" constitutive

relationship is

Aao ., 0 m (Ae;t) (61)= DijklA_kt -- Dijkl

13
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vc

which is the result presented in equation 2 of section 2.2. The procedure for integrating the

overall "effective" constitutive relation then proceeds as follows.

4.3 Fourier Integration Algorithm

R

D

u

f

g

1. From a knowledge of the stress state throughout the unit periodic cell at

the current time, t, calculate the inelastic strain increment Aek_ (at.,, qs, r) from an

appropriate unified viseoplastic constitutive relation. The viscoplastic constitutive

relation will vary according as r is in the fiber or matrix phase, respectively.

* r2. Compute the eigenstrain Aek_ ( ) throughout the unit periodic cell from the

implicit integral equation 59 or from equations 34 and 58.

3. Compute the stress increment throughout the unit periodic cell from equa-

tion 35 and update the stress, strain and viscoplastic state variables according to

the relations

oij (r,t -t- At)= oij (r,t) + Acrij(r),

_T (r,t + At) = ST (r,t) + AgT(r),

qi (r,t + At)= qi (r,t)+ Aqi (r).

4. Calculate the overall "effective" stress and strain increment for the compos-

ite from equation 61 and update the overall "effective" stress and strain from the

relations

(t+ z t) -- (t)

o As°.(t+ At) = (t)+
5. Repeat the preceding calculations for each incremental load step.

4.4 Implicit Integration Algorithm

The preceding algorithm makes use of the fact that the inelastic strain increment Ac_(r) is

independent of the total strain increment Ac_(r) if an explicit forward difference method

such as Euler or Heun forward difference--is used to integrate the unified viscoplastic relations

for the fiber and matrix phases. If an implicit method--such as backward difference or sub-

incrementation--is used, the inelastic strain increment depends on the total strain increment.

In this case the total strain increment must be obtained by iterating equation 58 in the form,

AcT(r)
1 ±oc rn

/kgOkl + gcc E E E' 9kuj (_) ///ei((r-r', {DijrsAers (r', AcTpq (r')) --
np =0 V_

-6D_j_ (r')[Ae_r_ (r ') - Ac_(r',Ae_r(r'))]}dV(r') (63)
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The first iterative guess can be taken as A_T(r) ----AE0I, and the right hand side evaluated

to give an improved guess for Ae T (r). This process is then continued with

{AcT(r)}_+I
l 4-00 ! m

= Ac°t+_-_-'gktij(_)///ei"(r-r'){DijrsAcTs(r',{AcT(r')}_) -
np=O Vc

_6Dijrs(r')[{AeT(r')} -Ac_(r',{AeT(r')}_)]}dV(r ') (64)

until the /_th and (A + 1) th iterates of AcT_(r) converge.

Equation 59 is not so convenient for iteration as equation 58 when AsPs(r) depends on

A_ (r). It is always necessary to know the total strain increment Ac_ (r) in order to calculate

the inelastic strain increment AePs (r', Aeprq (r')). But equation 34, viz.,

Dij_,Ae*k,(r) = Dij_k,Ack, (r,AeTq(r)) -6Diikz(r)[AcT(r)- Ack, (r,AcTq(r))] (65)

is an implicit equation for AsT(r) when the iterated quantity, A_]c_(r), is given. Equation 63

is therefore the appropriate equation to iterate when the inelastic strain increment depends

on the total strain increment.

The procedure for solving the implicit integral equations in 58, 59 and 63 is described in

section 8.
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5 Green's Function Approach

5.1 Green's Solution of Navier's Equilibrium Equation

The equation of continuing static equilibrium for the composite material throughout an ap-

plied strain increment is given by

O(Aa{j(r)) + Aft(r) = 0 (66)
Ox i

where Aft(r) is the incremental body force per unit volume of the composite material. From

equations 35 and 66 we obtain

D m 0(AcT(r))_ 0 (Dij_tA¢.kl(r)]_Afi(r) (67)
_ik_ _ OXj \/

which is equivalent to equation 37 in the absence of the incremental body force Afi(r). From

this equation it is clear that the divergence of the stress variation produced by Ae_cz(r ) may be

formally regarded as a fictitious body force increment, analogous to Afi(r), which is applied

to the homogeneous matrix material with elasticity tensor Dijmkl. The theory of elasticity for

homogeneous materials is generally concerned with the solution of the homogeneous differ-

ential equation 67--Navier's equation--when the right hand side is zero. When body forces

are present the standard method of solution is to obtain the displacement solution at r due

to a unit body force applied at r'. This solution is given by the Green's function Gij (r - r')

15



m.

which gives the displacement in the i th direction at r due to a unit point force applied in

the j th direction at r'. For a distributed incremental body force Afi (r') the displacement

increment at r is obtained by summing the results for the distribution in the form

ff[G,j (r - r')/% (r') dr(C) (6S)Aui(r)

V

Tile integration extends over the whole volume, V, of the composite material which may be

regarded as being of infinite extent.

When Afj (r') = 0 we know that the displacement solution is AuT(r) = Au°(r), cor-

responding to an applied uniform strain increment A¢°j on the infinite boundary of the

homogeneous matrix. For an effective distributed body force increment given by tile right

hand side of equation 67, with Afj (r') = 0, the solution for the total displacement increment

Au_(r) can be written as

ff[ 0 (D; moac;o(r')) (69)AuT(r) = j jIG. (r- rl)_x _
v

This corresponds to equations 17 and 39, the volume integral corresponding to the perturbed

displacement increment Aui(r) in 17.

For a material which is homogeneous with elasticity tensor D_kl the Green's function

satisfies the differential relation (cf. Appendix A, equation A.11),

Dm 02Gk,,_ (r -- r') + 51m5 (r -- r') = 0 (70)

where 6i._ is the Kronecker delta tensor given by 5_m = 1 if i = m and 6ira = 0 if i _ m, and

(r - r') is the three dimensional Dirac delta function defined by the relation

6 (r - r') = 5 (x_ - X'l)(_ (x2 -- X_)(_ (X3 -- X_) (71)

By applying the Fourier integral techniques in Appendix A, the Green's tensor is shown to

have the Fourier integral form,

//d3K M_j 1 (_) e-_K.(r r') (72)G_j (r - r') = (2_r)3 K2
--_:_

in which the inverse Christoffel stiffness tensor (cf. [33]) -M_ _ (_) is defined by

rn --1

_Ii; 1 (_) = (Dp_jq_p_q) (73)

with _p = Kp/

vector K, and K = _ denoting the magnitude of the wave vector K.

= Kp/K being a unit vector in the direction of the Fourier wave

0 (Gik (r-r')Dk'_,._Ae_ (r')) -Oxl
OGik (r - r'),-.m _

- _kt.._c,_ (r _)
Oxi

Making use of the relation

O (Dkmtm,_Ae*mn (r') )Oik (r - r') Ox--_l

=

(74)
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we may write equation 69 in the form

0 (Gik (r - r')Dk'_m_Ae*_ (r')) dV(r') +AuT(r) = Au°(r)-///Ox_
V

ff[ OG,k (r - r')
+ JJJ -Ox i nk_m,_Ae*n (r') dV(r') (75)

v

The first volume integral can be transformed into a surface integral via Gauss' divergence

theorem, viz.,

/jo( ) /i .Gik (r -- r')Dk'_mnAe*_, (r') dV(r') = n, (r') Gik (r -- r )Dklm, Ac,,,, (r') dS(r')
S

(76)
The surface integral extends over the entire outer surface of the "infinite" matrix material.

Since this is assumed to be at an infinite distance, all the integration points r' in the surface

integral are at an infinite distance from the field point r and Gik (r- r') = 0. Thus, for an

infinite body the first volume integral in equation 75 vanishes. This would not be the case

for a finite body in which the field point r is close to the surface integration point r', and

the volume (or surface) integral would need to be retained for these situations. In this case

other surface integrals would arise (cf. Appendix D, equation D.27) due to the application of

boundary incremental displacements or surface tractions on the surface of the material.

From the properties of the Green's function,

OG_k (r -- r') = OG_k (r -- r') (77)
Ox_ Oxl

which follows since Gik is a function of

r - r' (x 1 - Xl,X 2 - x;,x 3 - xl3)
(78)

Equation 75 may then be written alternatively as

AuT(r) = Au_(r) - fffoa, (r - r')Ox, (r') dV(r')
V

(79)

= 1 (0 (AuT(r))/Oxj + 0 (Au_(r))/Oxi), so that by differentiating equation 79But AeT(r) 5

with respect to xi and xj and taking half the sum, we obtain

A¢T(r) = AQ ° + fffuijkt (r -- r')Dkl_m_A¢*mn (r') dV(r')
V

(80)

which, by means of equation 34, may be written as

AeT(r) = Aci ° + fff uijkt (r -- r') { Dk'_Ac_ (r')-
V

--SDklrs(r') [Ac T (r')- Ac,_ (r')]} dV(r') (81)

17



An equivalent integral equation, involving the eigenstrain increment Aei*a(r ), can also be

obtained by using equation 34 to eliminate Ae_(r) from equation 80, which gives

Di_ktAe_l (r) = DijmktAckt(r)- 5Dijkt(r)[Ac°t- Ackt(r)] -

- 5V,, :,(r)fffUk,mo(r - r') D_nr_AE* s (r') dV(r')
V

(82)

In the preceding equations the operator,

1 (O2Gik(r -_ r') OeGjk (r - r'))Uijm (r - r') = -2 \ OxjOx, + _
(83)

gives the ij component of the strain increment at point r due to an applied stress increment

component kl at point r' in an infinite homogeneous medium with elasticity tensor Di'jk I and

Green's function given by equation 72.

5.2 Equivalence of Perturbed Strain Increment

From equations 18, 56 and 80 we see that the perturbed strain increment, A_kt(r) = Ac_i(r)-

Ac°l, is given by the equivalent relations,

1 _ _-_' fffD m A * ei((r r')
Ac_,(r) = E E E gk,_ (¢) }}} m_r_ e,,, (r') dV(r') (84)

" nv=O E,

or

fffUk,m,_ (r - r') D_r,A¢:, (r') dV(r') (85)Aekt(r)

v

The volume integral in the Fourier series representation extends over the volume, E, of

the unit periodic cell and the summation extends over the integers nv = 0, +1, ±2,..., etc.,

where p = 1,2,3. In the Green's function approach the volume integral extends over the

entire infinite medium, i.e., over all the periodic cells comprising the material. It is shown in

Appendices B and C that the Fourier summation expression in equation 84 can be converted

into the Green's function expression in equation 85 by means of the Poisson sum formula.

From equation 34 it is evident that if the elastic properties of the fiber are the same as

that of the matrix, then 5Dijkt(r) = 0(r)(D_k , - Dij_, ) = O, in which case

Ac_.,(r) = Ack,(r) (86)

is known explicitly without having to solve the integral equation. Prom equations 58 and 81 it

can also be observed that AekT(r) is known explicitly when 5D0kl(r ) = 0. The explicit relation

in equation 86 holds only when an explicit forward difference method is used to integrate the

viscoplastic constitutive relations. For implicit integration methods in which the inelastic

strain increment AGP(r) depends on the total strain increment Ac_(r), equations 58 and

81 show that even when 6Dijkl(r) = 0, the equation to determine Ae_(r) is still an implicit

integral equation.
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6 Self-Consistent Method

6.1 Outline of Self-Consistent Method

In this section we establish a self-consistent relationship between the overall "effective" stress

increment, Aa °, and the applied strain increment, Ae°s, for a matrix material which has

cylindrical fibers embedded in it in a periodic fashion.

Prom equations 34 and 61, this relationship can be written as

1

Aa ° = Di._,Ae°l- -_f/f {Do_k, Ack, (r) - 5Di.jk, (r)[Ae T (r) - Ack, (r)]} dV(r)
v_

where the total strain increment is determined from equation 81 in the form,

(87)

= Aeo + rre///Uktmn (r - r') {D,,_,_,Ac_, (r') -AeT(r)

V ,

- 6Dm,_, (r') [Ae_, (r') - Acr_ (r')] } dV(r') (88)

These equations can be solved in an approximate fashion by means of a self-consistent

method in the following manner.

First, assume that the unit periodic cell consisting of a cylindrical fiber embedded in a unit

matrix cell, Fig. 5, is replaced by a cylindrical fiber (of radius = a) embedded in a cylindrical

matrix (of "effective" radius = b) as depicted in Fig. 6. The other unit cells outside the given

unit cell--/, e., the rest of the composite--are then smeared out into a uniform matrix material

whose overall "effective" constitutive properties are the volume average of the constitutive

properties of the constrained unit periodic cell. The "effective" constitutive properties will

be transversely isotropic if the fibers are arranged in hexagonal arrays or tetragonal if they

are arranged in square arrays.

Second, assume that the total strain increment, Aekrt(r), and the strain increment repre-

senting the deviation from isothermal elastic behavior, Ackl(r), are spatially constant in the

fiber and matrix phases of the unit cell. These constant values (different in the fiber and

matrix of the unit cell) are taken to be the volume averages over the respective constituent

volumes of the fiber and matrix phases of the unit cell.

The composite now consists of three constituent phases, viz., the fiber, matrix, and

smeared out average phases. If the elasticity tensors of these phases are denoted by D f ,ijkl

D_kl and D_jkt, respectively, then the elasticity tensor at any point r in the composite can be
written as

Dk_r,(r) = Dktr, + 5Dktrs(r) (89)

where

if r is in the fiber;

if r is in the matrix; and

6Dkl_(r) = 6Dfkt,._ = Dku._f - -Dkl,-, (90)

6Dk,_,(r) = 6Dk,% _ = Dk_,. , - -Dk,,., (91)

6Dk,_, (r) =0 (92)
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if r is in the surrounding smeared out "effective" material.

The fiber and matrix constituent phases now represent fictitious body forces in the infinitc

"effective" medium with elasticity tensor Dijkt, and the total strain increment is obtained from

the solution of the integral equation,

AcT(r) = AQ°j +///Uijkt (r - r') DktrsA_:s (r') dV(r')
V

(93)

in which

_k,,._ZX_r*8(r') = _k,.Ac. (r') -- _,. (r') [ZX_T_(r') -- ZXc,_(r')] (94)

6.2 Strain Increments in Three Phases

We now make the approximation that the strain increments in the three phases are spatially

constant and equal to their respective volume averages, so that if r' is in the fiber Ae T (r')

and Acij (r') are replaced by

AeT(f) = l [[[Aer (r') dV(r') (95)

and

so that, from equation 27,

with

Ac_j (f) = Ac_j (r') dV(r')

v I

*f
Acij(f) = Z_eiPjj(f) -1- oqj AT

at!AT = a{jAT + (T- To) Aa[j-
U

- - em.(f) - a_. (T - To))

If r _ is in the nmtrix the relations are replaced by

(96)

(97)

(98)

1 T

Ac T (m) = -_-_fff Aeij (r') dV(r')
Urn

(99)

and

where

_lll(l

A%i(m) = 1 [ffAcij(r')dV(r')
VmJJJ

V,,,

Ac,;(rn) = ned(m) + a_TAT

(100)

(101)

*"_ * T m (T To) m_(tij _ = Ctij AT -[- -- z_Ctij

(4o(m)-4o(m)- (r- r0))- ADktm, _ (102)
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If r' is in the smeared out "effective" or homogenized medium the corresponding results are

AQ_ = Ac ° -- 1 fff Ac_j (r') dV(r') (103)
V_JJJ

v_

and

where

and

ACiy = _///Ac,3 (r')dV(r') (104)
v_

Ac 0 = Aei P + -_i*jAT (105)

= + (T - To)Aa j -

-- Cmn -- Olrn n -- (106)

The volumes Vy, Vm and V_ refer to the volumes of the fiber, matrix and smeared out medium,

respectively. If V_ is the volume of the unit cell and V denotes the total volume of the entire

composite material, then

V_= Vf + Vm and V= E + V_ = Vf + Vm + V_ (107)

6.3 Applied, Homogenized and Volume Averaged Increments

At this point it is important to emphasize the following distinctions. First, the strain incre-

ment applied to the composite is denoted by AQ °. which causes an incremental stress response

Acre. To obtain the overall "effective" constitutive equation these are equated to the cot-

averaged quantities, (AQ3 and "effective" homogenizedresponding volume T} <Acrij). In the
medium all quantities are denoted with overbars.

At any point r the appropriate constitutive relation is

Aao(r) = Dijkt(r)(AeT(r)- &Cat(r))

If we volume average this relation over the unit cell we obtain

(108)

(109)

In the homogenized phase the constitutive relation can be written as

-- --T

Aaij = DoktA_kt -- D_jktAckt (110)

-T

Since the strain increment AckL in the homogenized phase must correspond to the applied

strain increment Ae_,t--as in equation 103--and the homogenized stress increment Aaij must

correspond to the overall bulk stress increment Aa°j, we write the constitutive relation for

the homogenized phase as

Ao.O :- " 0DijklACkt -- Dijkl Ackl (111)
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6.4 Requirement for Self-Consistency

For self-consistency we require that the volume average of the microscopic constitutive relation

in equation I08 over the unit cell, viz. equation 109, should correspond to the constitutive

relation for the overall "effective" homogenized medium in equation 111. That is,

AaO = (Dijk, AakT) (Dijk, Ack, ) -- o-- = DijkiAekl -- --DijklACkl (112)

for self-consistency. Under the approximation that the strain increments Ae T and Ack_ are

spatially constant in the constituent phases, we obtain

Aw ° = _///Dijk,(r) (A_T(r) Ackz(r))dV(r) -- 0- = DijkzAekt - -DijklAckl

Vc

(113)

or

= -DijklAe°t - -Dijkz2(c_l (114)

i

At this point the elasticity tensor Dijkl and the deviation strain increment Ackt in the homoge-

nized medium are unknown quantities. In the next section we will solve the integral equations

for the total strain increments in the fiber and matrix phases, A¢_(f) and Ace(m), and we

will find that these values depend on the quantities "Dijkl, Ae_z and -_ckL in the surrounding

homogenized medium. Then, by equating the coefficients of Ac°t on both sides of equa-

tion 114 we obtain a relationship for the unknown elasticity tensor Di3kl of the "effective"

homogenized medium. The value of the unknown deviation strain increment A'-Ckt in the ho-

mogenized medium can then be obtained by equating the terms independent of Ae° f on the

left hand side of equation 114 to the corresponding term Di3ktAckl on the right hand side.

We now obtain the total strain increments AcT(f) and A¢T(m) in the two phases of the

unit cell. First, consider the total strain increment in the fiber phase.

Total Strain Increment in Fiber Phase

Equation 93 can be volume averaged over the fiber phase to give

vi- fff A_T(r)dV(r ) = Ac°i + _-l ///dV(r) ///Ui;k,(r-r') Dk,..A¢:. (r') dV(r')

l rrr rrr

(115)

where the field points r are in the fiber volume, Vf, and the integration points r' are in all

three volume phases (V = V I + Vm + V_). Equation 115 can be written as

Ax_T(f) = Ae°j+

+///Uijkl(r-r')-Dkl"A¢*rs(m)dV(r')+///UiJkl(r-r')'kl"Ac_'dl:(r')}]_;,v.
(116)

22

m

!
i

I

!
I

i
i
E
m

|

|

m i
I i

m i

|T

m !

|!

[]
m

== :

i i



t i

w

F

W

p

.,==
w

J_

_m

n

J

in which Dkl_As*_ (r') has been replaced by

-- * = -- - 5Dk,r, [AsT,(f) -- Ac_,(f)] (117)

and

-Okt_Ae;_ (m) = Dklr_AC_(rn) - 5Dk_ lAsTs(m) -- Ac_s(rn)]

in the respective fiber and matrix phases, and by

(118)

(119)

in the smeared out "effective" medium where 6Dk_ (r') = 0.

In the first integral in equation 116 the field point r lies in the volume Vf, and since

fffuokz (r -- r') dV(r') Dkt_ = Sijr_ (120)
v

is Eshelby's tensor (cf. Appendix E, equation E.1 and [35]), which is a constant tensor

independent of r when the field point r lies within the cylindrical volume V included in an

infinite medium with elasticity tensor Dkl_, we may write the first integral as

fffUzjk_ (r r') dV(r') -- *- Dkt_As_(f) = Sij_Ae_(f) (121)

The second volume integral extends over the volume Vm = V_ - V I of the matrix phase. Thus,

for the second integral,

ff/uijk, (r - r') dV(r') Dkl_Ac;s(rn)
vm

= fffu. , (r - r') dV(r') Dkt_Ac;_(m) - fffu. , (r - r') dV(r') -Dkt_sAc*_(m)

= S;j_._aSr,(m)- Si:i,.,As,.,(rn) = 0 (122)

since the field point r lies in the cylindrical volume Vf and therefore within the cylindrical

volume V_.

_re now have to deal with the last integral in equation 116. This integral can be written

as

ff/uiy (r - r') dV(r')Dkl_Ac_,

=_/ff_( i) 0G_k(r-r')+ 0 0Gjk(r--r')) dV(r')Dk_,Ac_,
O-xa

=///1 (0 0Gik(r--r')+ 0 0Gjk (r - r') ) dV (r,) -_ktr_Ac,. _
2 Ox,
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which can be transformed via Gauss' divergence theorem into two surface integrals: one over

the outer "infinite" surface S of the smeared out "effective" medium; and the other over the

inner surface of the "effective" medium, i.e., over the surface Sc of the unit periodic cell. The

volume integral then takes the form,

fffuijkz (r - r') dV(r')Dkt_sAcr_
G

ff l ( , OGik (r - r')= _ nj (r') Oxl
S

ffl(n_(r')OGik(r-r')+ 2 Oxl
Sc

OG_k (r -- r') _ dS(r') Dk,rsAc_+ n_ (r')
Oxl ]

acjk (r - ¢) _ dS(r')-b,+.,_,:r_+ 'n : (r')
Oxl ]

+

where n_ (r') is a unit normal vector at point r' on the surfaces pointing away from the volume

Vs. Now since the field point r lies in the fiber and the integration points r' on the surface S

are infinitely removed, we have OGik (r -- r')/Oxl ---* 0 on the outer surface S of the composite,

and the first surface integral can be neglected. If we write ni (r') = -n_ (r'), then ni (r') is a

unit normal vector pointing away from the volume V_ on the surface Sc of the unit cell, and

we have, via Gauss' divergence theorem and equations 77 and 83,

ff[Uijkt (r - r') dV(r') Dkt_Ac_

V 8

1 ((r') OG_k(r - r')ff
jj 2 \nJ Ox,
Se

OGjk (r -- r') _ dS(r') -DklrsnCrs+ (r')T/i
OXl ]

0 OGjk (r - r') _ dV(r') DkL_sAcr_
Ox_ Ox_ ]ff/_ ( 0 0Gik(r-r')= - o_;. _o-;, +

G

----///_( 0_'Gik (r -r')_ + 02GjA: (r-r'))-Ox'_ dV(r')-Dk'_ACrs
G:

= -fffu j , (r - r') dV(r') Dkt_Acr_
½

Since the field point r lies in the cylindrical volume V_, the preceding equation takes the form,

V. V_

or

//Uijkl (r - r') dV(r')Dkt_Ac_ = -Sijr_--_

where S,y,.,_ is Eshelby's tensor for a cylinder with elasticity tensor Dijkt.

From equations 116, 121, 122 and ]23 we obtain

Ae,j(I)T = Aeoj + _1 _"_._/f/ {SijrsA¢.s(f ) __ Sijr-_cc,._ }, dV(r)

(123)
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and since the quantity within the braces is a constant tensor,

:%(:)=:,4+s_,.(:,::.(:)-_...)
Nf)w

(124)

Dk,..A_:. (S) = Dk,..Ac..(f) - _D[_.. [Ae_:(f) - Ac,,(f)]

so that

/_rs (f) l_Crs(:) D,.,,q

and on substitution into equation 124 we obtain,

Given that

denotes the fourth rank identity tensor for symmetric second rank tensors, the preceding

equation can be written as

---' 5Df n] AeTntf) Ae(i)j +Iijmn + S,j,._D,._ m =

+s,.. (_X_r.(Z)--_.) +S,.m.;_eDI_n°_'_...(f)
which, by premultiplying each side with the inverse of the tensor in square brackets, gives

/kgT(f) = [Iijmn + Sijrs-Dr-s;_Dfpqmn] -1 {AcOn 4- Srnnrs (Acts(f)- _--Crs)9-

+ S_.,,D,,-_q 5D_..Ac_.(f) } (125)

The phase volume averaged stress increment in the fiber is then given by the relation

Aa_j(f) = D[jkl (AcT(f) -- Ackl(f),) (126)

6.6 Total Strain Increment in Matrix Phase

Now consider a field point r in the matrix phase. From equation 93 we may write

Ac;_(r) = As?./+ (r - r') dV(r') -Dk,,,Ae*,.,(f) +

+ ./f/uti,., (r - r') dV(r') Dkt,,Ac_*,(m) +/flu.,, (r- r') dV(r') -D,.t,.,A<,,., (127)

Since I_;,, = t:. - l_}, the second integral can be written as

fffU.ykt (r - r') dV(r')

///Uo,., (r - r') dV(r') -D_trsA¢*.(m) - ...fffuijk' (r -- r') dV(r') D_;rsA¢*.(rn) (128)
_;. vs
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and from equation 123 the last integral in equation 127may be written as

ii/uijkl (r -- r') dV(r') -Dklrs-A-_8 = --iiiuokl (r -- r') dV(r') DklrsACrs

t',, Vc

(129)

so that equation 127 is transformed into

A:T(r) = A:°j + fffuok t(r - r')dV(r')D_,_. (A::,(f) - A:_*_(m)) +

vi

+ fffuokt (r --r') dV(r')D,lrs (Ae:,(m)- A--_8)

v<

Averaging equation 130 over the matrix phase gives

(130)

A:_(m) = AeOj+ "lw-[[[dV(r)v.,aaav.. { fffU°kl(r-r') dV(r')Dktr8 (Ae,*s(f) - Ae,*s(m)) +

+ fffu,,,.,,;(r - r') dV(r')-Dklrs (Ae*_(m)- A-c_8) } (131)

or, since t"_ = 1¢_,- Vf,

1[A:_(m) = A:°j + _ fiidV(r)fiiuo,l(r-r' ) dV(r')-D,l_(Ae:_(f)- Ac_.,(m))+
v_ v_

+ iJS..:r llS.,.,(r- r')dV(r')-Dkl..(A:_*.(m)- A-_.) -
E. V.

-SIS,_.¢r_SIS_-,,,. (r- r')dV(r')Dk,.. (A:.**(f)- A¢:.(m)) -

_7 vs

,: 'V(.')",,..(a.:s¢--)- (132)

We may interchange the order of theNow consider the first integral in equation 132.

vohune integrals so that

./S/dV(r) fSSuo,t (r- r') dV(r'): iSidv(r')iiiuo,l (r - r') dV(r)

l:, _7 l,7 v.

(133)

Now r and r' are dummy integration variables, so that oil the right hand side of equation 133

the variables may be replaced with the integration variables x and y, viz.,

... ...llldV(r)liiu°k' (r-r')dV(r')= iiidV(Y)iiiuom (x- y)dV(x)

v;. vs ys v<

(134)
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But, from equation F.5 of Appendix F,

Uijkl (X -- y) = Uqkt (Y - x)

so that

fffdV(r) /ffUiikt(r-r') dV(r')= rrr rrr///dV(y)///U_jk,(y- x)dV(x)
JJ.] _

vc v: v: _,_

(135)

and the dummy variables y and x may be replaced with the variables r and r' to give

_.._fffdV(r) fffUijkt (r- r')dV(r')=//:dV(r)///Uijk, (r-r')dV(r')

_; v: v_ v_

(136)

Tiffs relationship is discussed in Mura's book ([24], page 336) where it appears under the

heading of the Tanaka-Mori theorem.

From equation 136, the first integral in equation 132 is integrated over the field points r

within the cylindrical volume V I. Since these field points lie within the cylindrical integration

volume _.. the first integral in equation 132 may be written as

1

Vm:f/dV(r)://Uijk, (r- r')dV(r')Dk,.. (A::s(f)- A:_*.(m))
W v_

fffs-- l_ru ijrs (nc;s(f) -- mc;s(m)) dV(r)

t)

= _-_fSij.._(Ae:_(f)- Ae:_(m)) (137)
?n

In the second integral in equation 132 the field points r lie within the cylindrical volume V_

and so the second integral may be written as

1

V,.///dV(r)://Uijkt (r- r') dV(r')Da,.. (A._* (m)- _--_.)

1 S-+.ill... dV(r)
t_

_ v.s,,..(a.-:.(m)-

Ill th(' _hir(t integral the field points r lie within the cylindrical volume Vf an(t so

(138)

1 A*
l,;,,/.//dV(r)///U_jk,(r - r')dV(r')-Dklrs ( CCrs(f)- A:,*.s(?'[/))

1

- V.,.:f/Sij..(As:.(f)- A,:.(m)) dV(r)

S,j,,,(Acrs(f) A
E.

(139)
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Finally, in the fourth volume integral, the field points r lie in the cylindrical volume Vf.

Since this lies within the cylindrical integration volume V_, we have

lira1- fffdV(r):ffUiiu (r - r') dV(r') Dkl,s (Ae:s(m) -- A--_)
JJJ JJJ
D v_

1 S= fff (A<(m)- dV(r)
rf

m

We thus obtain from equations 132, and 137 to 140,

m

v_ s * h-_..)+V_ ... (_..(m) - -

(140)

or

= Aeij + Sij_ (A_8(rn) - A-cr,) (141)

This relation for the total strain increment in the matrix phase is similar to that for the fiber

phase given in equation 124. By following the steps leading to equation 125 the expression

for A_T(m) can be put in the form

: --' aa )+
---1 bD_qr, AC_, (ra) } (142)+ Sm,_klDktvq

The phase volume average stress increment in the matrix is then given by the relation

Aaij(m) = D,j_, (AcT(m) - Ack,(m)) (143)

6.7 Overall "Effective" Constitutive Relation

As stated in section 6.4, for serf-consistency we require that the volume average of the con-

strained micromechanical constitutive relation over the unit periodic cell should correspond

to that for the "effective" homogenized medium. From equation 114 we require that

Acr_

-D A _o= ijkl e_.l -- DijklAckl (144)
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where the total strain increments in the fiber and matrix phases are given by equations 125
and 142 as

and

[Iijmn + Sijrs-Drs 1 ¢SD_mn] -1 {A:. + s,,,,_.,(:,_,.,(:)-_._)+

---I m -1

----I rn

+ S_,_k, Dk, _ 6Dpq,.,Ac,.,(m) }

with the deviation strain increments defined in equations 97, 101, 105 as

:,c,;(f)= :,_g(f)+ _.*:,,zxr

(_45)

(146)

(147)

(148)
all(l

Acij = AQ P +-_i*jAT (149)

By inserting equations 90, 91, 145, 146 147, 148 and 149 into equation 144 the relationship

for self-consistency requires that

in which

AijktAe °, {AijktSk,_,Ae_ P P P= _ _ BijrsAer,(f) - Cij,.eAe,.,(m) } -

- {AijktSkt,.,-_,.*- Bij_,a:.[- Cij_,a:_ I AT

-- 0 -- --P -- --*
= DomAckl -- Dij_lAekl -- Dok:_klAT

,_,,:. [,._,+ (,,g.._,_...,.,)] +

V,n ,,, [[rskl + -D -_ (D'" -1

(150)

_,_o

A,skt

(151)

and

]_i./kl

Cijkl

":o, [,...,,+ (D:.o.,,..,,,,,,,,,)]K. u,-., S,',-D---p-qL,, - -'

x[s,_,+s,_:2, (D,_,,,-_c,,_,)]- _:-:
V_-'-'ij,u

Vm m [I,.,kt + ---a

-- -- 1 Vm m

X

(152)

X

(153)
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These results for Bijkl and Ci_u can be simplified somewhat. We write Bijkl as

(154)

where

and

We then obtain

Yokl = D_vq (Ivq,8 + X_,8) -1 (Sr_kz + X,_k,) - D_k l

Xpqr s -- - 1 f--- S_mnD,_gh6D_h,s

Yijkl + D_kl =- D_pq (Ipq_ + X_) -1 (S, skt+ Xrskl)

(155)

(156)

(157)

or

f -1

Ttiis result simplifies to

= (I jk + X,jkl)-I (&zm + Xktmn) (158)

(I59)

which can be premultiplied by (I_o + Xpqij ) to give

(160)

from which

From this result we find that B,ju and Cokz can be written in the simplified forms

(161)

(162)

and
Vm rn _ -1 -1

Cijkl = _c Diypq [Ipqgh q- SpqrsOrsrn n (or_ngh - -Dmngh)] (Sghkl - Zghkl) (163)

Equating the coefficients of Ae°l in equation 150 for self-consistency then requires that

-Dijkl = Aokl (164)

which, from equation 151, produces the implicit relation

+ VmD"eV_,,,., [I,-,k, + S,_pqD--pq_,, (D:,_k , -- Drank0]-' (165)

2

The value of homogenized "effective" elasticity tensor D_k_ may be obtained from this im-

plicit relationship by iteration. Naturally, when the self-consistent method is embedded in a

nonlinear finite element program, this iteration would be done outside of the code and the

explicit values of Dokl would be used in the program.
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For self-consistency we also require from equation 150 that

--p
A,jpqS_k, Aek, - B#k, AeP (f) - Cok, AcP(m)

-- p

= D#kz-_kt (166)

and

AijvqSmkf_k*t - BijkzAa*k{ - Cijkz Ac_*k'_ = -D,jk, a_l

which, by setting Aijpq = Dijpq, reduce to

A_i P _- [-Dijpq (Spqrs- fpqrs)] -1 (BrsklAcP(f) -_- _rsklACP(m))

and

(167)

(168)

_j ----- [-'Dijpq(Spqrs- [pqrs)] -1 (BrsklOl;{ -[-CrsklC_;?) (169)

The overall "effective" constitutive relation for the homogenized composite in equation 150

is now easily computed.

If a forward difference algorithm is used to evaluate the viscoplastic strain increments,

the only implicit equation which occurs in the formulation is that for the elasticity tensor

of the homogenized medium given in equation 165. It is, perhaps, ironic that in deriving

th(, highly nonlinear viscoplastic constitutive relationship for the homogenized medium, the

4rely iterative procedure required is that for the elasticity tensor. This implicit elasticity

relationship also occurs in the subvolume method due to the occurrence of the tensor 5Dokl

in the volume integration. The implicit nature of Dokt is due to the fact that the homogenized

elasticity tensor is found by volume averaging the constrained elastic properties of the unit

periodic cell, and these constrained properties, in turn, depend on the elasticity tensor D,jkl

of the homogenized constraining medium.

The constitutive relations given in equations 126 and 143 are used to update the stress-

strain history in the constituent phases, whilst equation 150 is used to update the stress-strain

history in the homogenized self-consistent medium. These relations, which contain AqT_(f),

A_(m) and -Dijkl, depend on the Eshelby tensor Sii,-, for the homogeneous smeared out
medium, which is defined in equation 12a as

S,j_ = f/fuijkl (r - r') dV(r') Dm_, (170)

when the field point r lies within the cylindrical volume, V. The "effective" homogeneous

smeared ollt medium for a composite with cylindrical fibers will exhibit transverse isotropy if

the fibers are arranged in hexagonal arrays, and it is shown in Appendix E that the Eshelby

tensor for a transversely isotropic cylinder, whose x3 cylindrical axis is normal to the plane

of transverse isotropy, has the component form,

5Dl111 -}- L)1122
,5'1111 ----- __ (171)

8Dllll

$2222 = Sl_ll (172)

3Dl122 - Dllll
Sl122 ---- __ (173)

8Dml
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Dl133
$2233 -- __ (174)

2Dun

S,133 = $2233 (175)

$2_,, = S,,22 (176)

3D1111 - Dn22

$1212 = S1221 = 8Dllll (177)

82323 : 82332 81313 : S1331 -- I (178)

with all other Sijkl = O. If the fibers are arranged in tetragonal arrays, the Eshelby tensor

will exhibit tetragonal symmetry. This case is currently being worked out.

7 Integration of Self-Consistent Model

Fourth rank tensors can be written in Voigt notation as matrices and second rank tensors as

vectors, (cf. Appendix 2 of Mura's book, [24]). For example, with the notational changes,

Aa, = Aal,, Aa2 = Aae2, Aa3 = Aa33, Aa4 = Aa23, Aa5 _ Act13, Aa6 = Aa12

and

A_'! = AE',I, At2 = A._'22, A_'3 = A_'33, A_4 = 2A_23, A¢5 = 2Ac13, A_6 = 2Ac12

Hooke's law for an isotropic elastic medium

' Aa, /
Aa2

Aa3

Ao'4 ]
A_5

mo'6 ,

can be written as

A+2# A A 0 0

A A+2# A 0 0

A A A+2# 0 0

0 0 0 # 0

0 0 0 0 #

0 0 0 0 0

0 ' Ac, ]

0 A¢2 I0 A_3 .

0 Ae'4 [
0 Acs

# A_6

(179)

For a transversely isotropic medium--such as the smeared out "effective" matrix for hexagonal

fiber arrays--the relationship can be written as

" Villi DI122 Dl133 0 0 0 ' /_el /

AOrl ] Dl122 Dllll Dl133 0 0 0 A_.2
Aa2 D D D 0 0 0

/
A°'3 / _133 _133 _)333 A_. 3

=- D 13 0 0 ' A¢ 4

A°'4 0 0 0 })3 D1313 0 AE 5

A°'5 ( _1111 - _1122 ) A_6A_6 0 0 0 0 0

(180)

from which the isotropic results can be recovered by taking D,,,, = 2#v(1 - v)/(1 - 2v),

Dz3:33 = 2pv(1 - v)/(1 - 2v), Dl122 : 2#v/(1 - 2v), Du3z = 2#v/(1 - 2v), and D1313 ---- P-
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The Eshelby tensor [35] relates the constrained strain increment, A5_), in an inclusion

which undergoes a transformation or eigenstrain increment, Ae_a, in an infinite medium with

elasticity tensor _ijkl, in the form

Aei_ = SijklAe_,,_ ( 181 )

In Voigt notation we have

= SoAej

where the Eshelby matrix takes the form,

[&j] =

5Dl111 -4- Dl122 301122-Dllll Dl133
__ m

8Dllll 8Dl111 2Dull

0 0 0

3Dl122 -- DIlll 5Dl111 q- Dl122 Dl133
B

8Dllll 8Dllll 2DI,1,

0 0 0

0 0 0

0 0 0

/ '_1
0 0 0 2(_) 0

X "-1- /

o o o o
0 0 0 0 0

0

0

2 \( 3D,,,,8___u11-Dl122 )

(182)

The integration of the self-consistent model then proceeds as follows.

1. Initialize the starting variables: time t = 0; temperature T = To; overall

0 0 = _P = 0 for i = 1 to 6; stress and strain in the"effective" stress and strain a, = ei

er(f) eP(f) O, and a_(m) = er(m) = eP(m) = 0respective phases eri(f) = = =

for i = 1 to 6; equilibrium stress in the respective phases f_(f) = f_(m) = 0 for

i = 1 to 6; drag stress in the respective phases K(f) = Ko(f) and K(m) = Ko(m).

2. Compute the overall "effective" elasticity matrix iteratively from the relation

Dij -- Vf Df [{Skj + Skl"_l,_: (O_,j- ._,,,j)]-I ]_

+ D,o, [<+ (,%- o,,,,)]
where (_kj is the Kronecker delta matrix, 6kj = 1 for k = j and 5kj = 0 for k _= j,

and the Eshelby matrix Sij is given in equation 182.

3. Start the loading history step. Evaluate the inelastic strain and state vari-

able increments in the fiber and matrix phases from the unified viscoplastic con-

stitutive relations. Any unified viscoplastic model may be used. Such relations

may have the following form:
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In :the fiber.the ine!_ti_c strain increment is

\ g(:) ]

where the equilibrium or back stress increment is calculated from the relation

I 2 p p
Af_,(f) = o{A_P(f) --Q2_/gAcq (f)A_q (f) f2i(f)

for i = 1 to 6, and the drag stress increment from

:,_:(:)=[d-d (_(:)-_o(:))]v/i:,q(s):,q(s)
In the matrix a similar set of constitutive relations can be used, so that

AeP(m)=fsi(m)-_i(m)_:i_(3Sq(m)-_q(f))(3Sq(m)-_q(m))ln'_-l\-KTr _ ] K(m)

Aa_(_n) 0?A_(m) m 2 p p-'_ -- _2 V/3 i_q (m)AEq (m) _,(m)

fori-1 to 6, and

_<(m): [or- or(K(m)-_<0(m))]_/_Z,q(m)Aq(m)
The quantities n f, n m, 0_, 0'_, for p = 1 to 4, are material constants associated

with the unified viscoplastic constitutive relations.

The deviatoric stress in the fiber phase is defined by

(a,(f) + a,(f) + era(y)) for i = 1,2,3s,(:) = a,(:)- _
an(]

si(f) = a_(f) for i = 4, 5, 6.

Similar relations apply to the matrix phase, viz.,

1 (Ol(m) 4- o2(m) J- o3(m)) for i= 1,2,3,,(m) = _,(m) -
and

s_(m) = a,(m) for i = 4, 5, 6.

4. Compute the "effective" inelastic and thermal strain increments from the

relations

AS P = [D,. (Sin-/m)]-i (BqkAep(:)+ CqkAeP(m))

and

-_:AT_- [--Dip(_pq- ipq)]-i (BqkOl,k f .j_CqkO.krn),A, T

where

and

Bqk :

---1 -- -1vm_.,+s..D..°(D.; ,.°.)]
Vc

(&_ - ¢_)
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5. Evaluate the deviation strain increments from the relations

Acq(f) : A_q'(f) + aqY AT

Acq(m) = AcP(m) + a*qmAT

6. Evaluate the phase volume averaged total strain increments

a_r(i) = [_ +s,_.-;_'(DD-3qD]-_{I,4+

A- SAq (ACq(m) - -_q) -ff $jpD_ 1 (Dqmr - -Vqv) Act(m)}

7. Cak'ulate the stress increments in the fiber and matrix phases from the

relat ions

and

a_,(_)--D,7(aq(m)- ac_(._))
8. Compute the overall "effective" stress increment from the relation

9. Update the variables:

m (f, t + At)

ai (m, t + At)

_, (f, t + At)
_, (m, t + At)

I( (f,t + At)

K (m, t + At)

ef _ (.f, t + At)

c_"(.,, t + At)
cir (f,t + At)

_y (,,,,t + At)
_I)(t + At)

0 (t + At)

T(t + At)

= (7_(f,t)+ Aai(f)

= _,(m,t) + _,_,(_)
= £_ (f, t) + AD,(f)

= _(._,t)+/m,(m)
= K(f,t) + AK(f)

= Ic (re, t) + AK(m)
- ¢_(f,t) + A_P(f)

= _ (,,_,t)+ _<_(.,)
= e_ (f,t) + A¢_(f)

= _ (re,t) + _T(-_)

o AeO= _, (t)+
= T(t) + AT

10. Start new load step.
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8 Subvolume Method

8.1 Approximate Integration of Integral Equations

The determination of the stress and strain increments throughout the composite material

requires the solution of the integral equations

Do_kiAe_u(r) = DijmklAckl(r) -- 6Dijk,(r) [Ae°t- ACkl(r)] --

ssi- 6Di3k,(r) _ _--_.'gkl_,, (_) D:...Ae_* 8 (r')e it_(r-r') dV(r') (183)

= v¢

or

DijmklAg*kl(r) = Dij_kzACk,(r) - 6Dijk,(r)[Ae°k,- Ack,(r)] --

6Dijkz(r) iifuklm. (r -- r') DT.r.Ae;. (r') dV(r') (184)

V

at each field point r in the unit periodic cell.

Nemat-Nasser and his colleagues [25.26.27.28] have demonstrated the efficacy of dividing

the unit cell into a number of subvolumes and assuming that Ae_. (r') is replaced by

Ae_n (r') _ Ae_, = _-_niTSAe_, (r') dV (r' ) (185)

corresponding to its average value in the/_th subvolume.

Let there be N subvolumes in the unit cell, with M subvolumes in the fiber and N- M

subvolumes in the matrix. Then the preceding integral equations can be written as

D_klAe_l(r) = DijmklAckl(r) - 6Dijkl(r) [Ae°t- Ackl(r)] --

1 ______-i-°° "(iii )_ SDijkl(r)_c _ _-_ __,'gklmn (_)eie'r _ e-ili'r' dV(r ') D,_.rsAe;_ (186)
np=0 8=1 \ vn

and

D,_'ktAe_,(r) = Dij_k, Ack,(r) - 5Dijki(r) [Ae°l- Ackl(r)] -

:"(iii )- 6D,jk,(r) _ E Uklmn (r -- r') dV(r') nmmn,,Ae:_ (187)
q=l B=I

where Vzq denotes the _th subvolume in the qth unit periodic cell, and it is assumed that the

field point r is in the first periodic cell for which q = 1.

These equations can be volume averaged over the a th subvolume in the unit periodic cell

to give

D., Ae.,_ m <, <_ [ _Ac_,]_6Dok, xijkt kl -_ DijklACk I _ 6Dijkl AeTl a

x E E E'gk,-_ (¢) e ier dV(r) E Vr_ e-i¢_' dV(r') n,_n._Ae;_ (188)
hi,=0 J=l
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and

m o o[i_klz_ekZ = DijkiAckl -- 6D_jk_ As l

:" ( sii iii )
q=l fl=l

i

In these equations the deviation strain increments Ac_l are evaluated from the unified

viscoplastic constitutive relation for the a th subvolume based on the stress value a_j(f) or

cri'J (m) in the subvolume, according as the a th subvolume is in the fiber or the matrix phase,

respectively. The notation bD_jkt also denotes the value of D_k l - Dijmkl or 0 according as the

_,h subvolume is in the fiber or matrix phase, respectively.

If we use Nemat-Nasser's notation and write

l/f/ iti rQ_ (_) = v<,-- e " dV(r) (190)

v_

and denote

G
f_ = -- (191)

E

as the volume fraction of the a th subvolume, then the preceding equations may be written as

N [ +_ D _ n _ Qn
D_ 6_ + 6Di_kl _ _ ][2'gk,m_ (¢) ._,f Q (() (-_])

3= 1 rip=0

o [ijklZACkl -- _Dijkl Ac°t (192)

and

--ij,.._- + 6Dijk, dV(r) Uklm. (r - r') dV(r') D,,.,r, _ AG*. _

._ 1 q=l \ '_ t;," Vzq

=D °[ (,o3)0x.l_cx. l 6Dok l A o

where b`'_ = l if ct, = fl and 6 <_O= 0 if c_ # fl, and no sums on (t, fl are intended unless

explicitly stated.

Now 6Di'}x. l = 0 if the c_th subvolume resides in the matrix. In this case equations 188 and
189 show that

Ae_./' Ac_q, for M < c_ < N (194)

Thus, only M unknowns (associated with the subvolumes in the fiber) are involved in Ae;,_

and the N = M known quantities (associated with the subvolumes in the matrix) given by

equation 194 may be taken over to the right hand side of the equations. Equations 192 and

193 may therefore be written in the form

E_

w

m

w
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D_jr86 _ + 5D,3kl _ _ _-_.'gkt._ (¢) m _ _ Qz ._'_ Dm,_r,f Q (_) (-_) Aer_
fl= I np =0

= Dij_tAck_ - 6Di_k, [Ae °` - Ac_l ] --

N +_

2=M+l np=O

(195)

and

D_ _B + 5ni_kt _ dV(r) Ukt._. (r - r') dV(r')

fl- I L-zJrs- q=l Va Vflq

= Di_k, Ac_l - 5Di_k, [Ae °' - Ac'_z ] -

N /:/- __, 6Di_k, __. dV(r) Uklmn

3=M+l q=l

D=n?'8

(r- r') dV(r')) D_nr, Ac'_ ,

a *y

(196)

forc_=l toM.

By defining the fourth rank tensor Aij_ and the second rank tensor b_ in the Fourier

series representation as

%O0

np=O

gklmn (¢) m fl a QflDmn_. f Q ({) (-_) (197)

and

J
[]

g

=

l

I

l

l

|

|

bi_j : Dij_tAck_ - 6Di_k, [Ae°k,- Ac_l ] -

N +oo

- _ 5D_u _ _ E'gklmn (¢) D,_n,.,IZQ _' (_) Q_ (-_) A_, (198) =
fl=M+l np=O []

or. in the Green's function representation, as

Aijrs ----- --,3rs- q- 6 ijkl Z dV(r) Uklmn

q=l \ _q

(199)

|

l

and

O
ij = Di'_k, Ac_, - 6D,_jk, [Ae°k, - Ac_,] -

- Z 6Di_kt_-_- dV(r)fffUk,mn

fl=M+l q=l Vc_ V3 q
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tlw integral equations canbe cast in the form,

w

M

A,_5 A_-*e _ (201)E "-i) rs--rs = biJ for a = 1 to M
_=1

a_
In Voigt notation the fourth rank tensor Aijrs can be written as a matrix ..pqA"_, and the

second rank tensors Ae;_ and b_j can be written as vectors Ae_Z and by, so that

M

A_qBAe_ _ = bv for a = 1 to M (202)
B=I

This represents a system of 6M linear equations for the unknown values Ae_ z, each matrix

clement a_ of the matrix A consisting of a 6 x 6 submatrix, in the form

[All] ......... [AIM]

[A_,] ......... [A_,]

• ... [Ao_]-.. :

[A,,I ......... [AM,]

{Ae*_}

(b'}

{b 2}

(203)

u

!

w

!

!

where the submatrix elements are defined as

[A_] =

A?I _ AI°_ A_3_

A_ A2°_ A_

A_ A_ A_

A_ A4°_ A°_a

A_ A_ A_3_

. A_ A6o_ A_

A;g
A_g
A_4_

A_4_

A_ A_

A_ A2_

A_2 A_g

A_ A_

As_ A_

A_ _4_EJ

(204)

and the corresponding column vectors as

/_C 3'

Ae._ and {b_} = ,/ b,: | ' (205)

zx_;_ bg

Tlfis system can be solved by standard Gaussian elimination. However, if M subvolumes

ar(' in('lude(I in the fiber, these equations represent a 6M system of equations, whose solution

may pose storage problems on the computer.
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8.2 Solution of Integral Equations by Iteration

An alternative is to use equations 188 and 189 in an iterative fashion. As a first guess the

integral terms in 188 and 189 can be neglected and we obtain

Dm --,_ _n _ _ [ --Ac_l ] for a=ltoMijklA_ekl : DijklAckl -- 5D_ykl Ae°t

corresponding to the subvolumes in the fiber, and

Dm A *a m c,ijkt,...,ekt = D_jk_Ack_ for a = M + 1 to N

corresponding to the subvolumes in the matrix. These relations can then be substituted

into the integral terms to yield an improved "Rayleigh-Born" approximation to Dij_ktAe_ ' for
m _¢ot

a = 1 to N. This process can then be repeated until DijklAekl converges to within a user

specified tolerance. In essence we solve the equations

M +o0

E D,jk, EF.E'- gklm,, (_) "' _ _' QB'_ D,,_,_f Q (_) (-_) {Ae:_}_ -
'_ -- I np = 0

N =1=oo

E E E E'_' Vm.,._f Q (_) Qz (--_)- gk m.(¢) TM ' ° (2o6)
B=M+I np=O

or

Dij_kl {AC_c?}A+I _-- DijmklnCk_- _Di_kl [ t_Tl -- nC_l] -

-- E 5Di_kt E dV(r) Uktmn (r - r') dY(r') D_,_ Aer* _ -

_=1 q=l \ Va V,q

" : ( Sii iSi )- E 5D_kt _-, dV(r) Uktm, (r - r') dV(r') D_,_Ad_

3 = M + 1 q = I V¢, Va q

(2o7)

until the (A + 1) TM iterate differs insignificantly from the /_th iterate.

In the solution of the composite problem, two constituent phases, namely the fiber and

matrix phases, have been considered. For composites with a third chemically degrading phase

separating the fiber from the matrix, the preceding solutions may be modified by assuming

that, in the summations from /3 = 1 to M, some of the subvolumes, say from fl = L to

M, pertain to the degraded material. It will then be necessary to postulate a viscoplastic

constitutive relation for this chemically degrading phase.

The total strain increment in the a th subvolume in the unit cell is then obtained by

averaging equations 57 and 80 over the a th subvolurne to give,

M ±oo

= A£71 -_ E E E E tffklmn (¢) f_Q_' (_) Qa (-_) D,,_,,_.Ae:_ +

_=1 np=0

N ±_

/3=M+l np--_O

(208)
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or

= aG + dr(r) (,"- ,") dV(r') O,",L.,a<!
_--1 q=l G" 'v_

+ y_. y_ dV(r) Uk,m_ (r -- r') dV(r') D_,Ac_

fl=M+l q=l V¢, V_q

(209)

for a = 1 to N.

The constitutive relation, required to Update the stress and state variables in each sub-

volume, is then given for the (9/th subvolume as the average of equation 35 in the form,

Aa,'} = D,j_, (As_ '_ - As_/') (210)

If we assmne that N -- 2, with one subvolume in the fiber and the other in the matrix,

then the lheory is similar to the self-consistent model in which the strain increments in

the constituent phases are assumed to be spatially constant and equal to their respective

constituent volume averages. However, the interaction effects of the nearest neighboring

cells are fully accounted for since geometric periodicity is assumed in the integral equation
formulation and the material outside the unit cell has not been smeared into an "effective"

uniform material.

In both the Fourier series and the Green's function formulations integrals of the form

///e iK'r dV(r) (211)
vo

need to be evaluated over the subvolume, V_. These Laue interference integrals [39] can be

evaluated exactly if each subvolume consists of a circular or oblong cylinder. In the case of a

circular cylindrical fiber, each subvolume within the fiber would consist of an infinite cylinder

with a cross-section in the shape of an element of area in cylindrical coordinates, comprised

of two circular arcs with constant radii, I"1 and r2, and two radial segments along the lines

of constant 9_ and 92. An attempt will be made to evaluate equation 211 for this type of

cross-section. If this proves too unwieldy, the subvolumes within the cylindrical fiber can

bc taken to be cylinders themselves, with the cylindrical fiber represented as a "bundle of

sticks". We assume that the actual fiber is comprised of subvolumes of the correct, shape, but

we make an approximation in performing the volume integration over a circular cylindrical

sul)v()lume.

9 Concluding Remarks

This (locument is the first anmml report on NASA Grant NAG3-882. Much of the work on

which this report is based exists only as a mdlange in the literature and we have therefore

attempted to write the report in enough mathematical detail that it can be worked through

without reference to the literature. In the second year we shall work out the required integrals
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in the formulations and program the methods in FORTRAN subroutines suitable for inclu-
sion ill nonlinear finite element programs. In the third year we will determine the material
constants for various composite materials and provide a comparison of the present theory
with finite elementand experimental results.

Our aim is to produce an end product which can be used in nonlinear finite element
and boundary elementprograms for analyzing the structural behavior of composite materials
under thermomechanical loading conditions at elevated temperature.

The viscoplastic behavior of periodic compositesis analyzedby meansof implicit integral
equations. These integral equations arise when the problem of determining the stress-strain
variation throughout a unit periodic cell in the periodic composite is solved by a Fourier
series or Green's function approach. In this report we show that the Fourier series and
Green's function approachesare mathematically equivalent by means of the Poisson sum
formula. By applying simplifying assumptions the integral equations can be solved in an
approximate fashion and usedin structural analysisprogramsto analyzethe overall behavior
of the composite. When the strain-temperature history at the "damage critical" location
has been determined from the structural analysis, this can be used to "drive" the "exact"
integral equations to determine the stress-strainhistory variation throughout a unit periodic
cell located at the critical location.

The unit cell in the periodic structure can be formulated to analyze fibrous, laminated
and particulate composites. By retaining the effectsdue to the application of displacements
and tractions at the surfaceof the composite it is also possibleto analyzethe behavior of thin
walled composite sectionssuch as are found in turbine engine combustor liners and blades.
When this is donethe integral equations which must be solved are basically thosewhich are
used in boundary element programs. In the constitutive subroutine which we plan to embed
in the nonlinear finite element program to analyze the overall macroscopicbehavior of the
composite, we effectively have a boundary element equation (specialized for the caseof a
periodic composite) which wesolve in an approximate fashion for the stressat the Gaussian
integration point when the boundary displacement on the element is prescribed by the finite
elementprogram.

When the effectsof damageare included in the constitutive formulations it will bepossible
to embed the subroutine in an optimization program such as ADS in order to determine
optimum composite configurations.
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Appendix A

Properties of the Green's Function

Consider a point force fk (r') acting at the point r' in an infinite medium with elasticity tensor

Dokl. From the definition of the Green's function the displacement at the field point r due

to the point force fk (r') at r' is

ui(r) = Gij (r r') f3 (r') (A.1)

so that the infinitesimal strain at r is

1 (OGq(r2-r') cOGmj (r - r'))eim(r) = _ \ Oxm + Oxi fj (r')
(A.2)

and the associated stress is

akv(r) = Dkuimeim(r) (A.3)

or

(aGO (r - r') OG,,j (r - r'))akp(r) = Dk_m I \ _)x,_ + Ox_ fj (r') (A.4)

Since the elasticity tensor Dkp_,, is symmetric with respect to the indices i and m, the last
relation can be written as

OGij (r - r') fy (r') (A.5)
akp(r) = Dkpim OX m

For static equilibrium, we must have

fk (r') = - f/np(r)apk(r) dS(r)
S

(A.6)

where S denotes any closed surface in the infinite medium with an outward unit normal rip(r)

whi('h surrounds the point of application of the point force fk (r'). An application of Gauss'

divergence theorem gives

_fffo   (O dV(r) = tffD O:G'J (r - r')
fa (r') = jjj cOxv -]]j k_m OXm-O-Xp fj (r') dV(r)

V

(A.r)

Writing

fk (r') = f) (r') f//6kj6(r r') dV(r)
V

then gives the equilibrium requirement that

(A.8)

I/f( 02Gij (r - r') }f, (r') / Dkmm Oxx,_ + 8kiwi (r -- r') dV(r) = 0
V

(A.9)

3
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Since fj (r') and V are arbitrary, then

Dk_mO_G_j (r - r') + _fkj_ (r - r') = 0 (A.10)
OxmOxp

is the differential relation satisfied by the Green's tensor function. When multiplied by fj,

this is just Navier's equation of elasticity with the displacement u,(r) = G_j (r - r') fj (r') and

the body force set equal to 5kjf3 (r') 5 (r - r').

Rearranging the indices, this differential relation can be expressed as

02Gkp(r)

Dok_ Ox_Oxj + 6_pS(r) = 0 (A.11)

The solution to the differential equation can be found by applying Fourier integral tech-

niques. On multiplying the differential relation by e igqxq dXl dx2 dx3, i.e., by e iK'r dV(r), and

integrating over all space, we obtain

)_2 /f/
D,y jj_ axtoxj -0¢

(A.12)

From the sifting properties of the Dirac delta function the last integral is unity, so that

/fj {nijklO_l _OGkp(r)_-_xj ) A-niJk20_2 _ _xj ](°qGkp(r)_A-

-- 0_

(A.13)

Integration by parts severally with respect to Xl,X2,X3 then gives

r_, iK3,.3 0Ckp(r) ] oo }x e i(h''x'+K:_a) dx_ dx3 + 1-)ijk3C _ | e i(Klx_+K2x2) dx_ dx2 -
Oxj J _a=-_

L/_./{ OOk"(r)iK,+Dijk2-- D_j],,t Oxj
-- 00

+ 6il, = 0

X

OGkP(r) iK2 + Dijk3OG_xj!r) iK3}Oxj
e iK_ dxl dx2 dx3 +

(A.14)

The surface integrals are zero since OGkp(r)/Oxj vanishes at the infinite lower and upper

limits of integration, so that one integration by parts yields the result,

OO

- D_jk,///iKt aGkp(r) dK._ dV(r) + _ip = 0
Ox_

-- r2_

(A.15)
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A second integration by parts yields

+ Dijk,fffi2KtKjCkp(r)e iKr dV(r) + 6,p = 0 (A.16)
--OO

or

where

DqklKzh_Okp(K) 5iv (A.17)

oO

(_kp(K) =///Gkv(r)e iKr dr(r) (A.18)
--042

is the Fourier integral transform of Gkv(r). By writing (_ as a unit vector in the direction of

the wave vector N, we have

Kj _ Kj (A.19)

in which K -- _ is the magnitude of the K vector. Then

or

K 2Dijkt(t_j(_kp(K) = 5iv

The Christoffel stiffness tensor M (cf. [33]) is defined by the relation

(A.21)

l'l/[ik(_) = Dijkl(l(j (A.22)

so that

K2M_k(¢)(_kv(K) = 6w

Prcnmltiplying both sides by the tensor K-:M -I gives

(A.23)

(_o(K) = K-2Mi;'(4)

The Fourier inverse of equation A.18 gives

(A.24)

Gij(r) = (27r)-3///e-iK'rc_.ij(K) d3K (A.25)

where d:_K = dKl dK2 dI(3, so that we finally obtain the Green's function in the Fourier
iJl! egral form

= fff daK Mi_-'(¢ ) e_iK.r

G,j(r) j j j(2_) 3 K2 (A.26)
--OO

wit, h

_,/'i;1(_) = (Diklj(l(k)-I (A.27)
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This representation of the Green's function yields explicit results for isotropic and transversely

isotropic materials (of. Mura's book, [24]). For cubic and general anisotropy the Fourier

integral representation must be used.

Often, we are concerned with volume integrals of the Green's function and its derivatives

with respect to r, such as Uktmn(r). It is then advantageous to use the Fourier integral

representation even for isotropic and transversely isotropic materials. The advantage is gained

by reversing the order of the wave vector and volume integrations, whereby many of the

integrations can be carried out explicitly.

Sir William Thomson (Lord Kelvin) obtained an explicit form for the Green's function of

an isotropic elastic material in 1848. As an example we may deduce the Kelvin result for the

Green's function of an isotropic material from the Fourier integral relation. For an isotropic

material

Dokt = _6i36kl + # (6ik_jt + 5ilSjk) (A.28)

and so 2II, k(() = Dijkt_t_3 has the form

Ma.(_) = (AC_k + .6,k_d, + #_¢k) = ((A + #)CCk + #_,k) (A.29)

since

Tile inverse tensor Mi[.l(_,) is given by the relation

(_-)2 + (_-)2 = 1 (A.30)

m

J.

D

i

m

i

m

E

m

m

__ m_fik A + p _G (A.31) []
+ 2.)

which is easily verified by showing that

 MCk= G

From the preceding relations •

(A.32)

m
i i

a+" |i
M,_' Mjk = #(,_ + 2#)

_ ,,_nt- ]A_i_k nt- (_ik ()_ + #)2 _k (,X + #)# _k = 6_k (A.33)
# #(,_ + 2#) #(A + 2#) _.

as required.

Tile Green's fulwtion is therefore obtained in the form [] :

-3 f_clr_iJ e-*KrdaK /_/ _ iGi,(r) = (2rr) "/./Jp-__ --- (2rr) -a _ #( --_-_#)+# KiKj__ e_iK.rd3 K (A.34)

From a tal,h, of Fourier transforms (cf. [36]) we find that

1 fff 1 iKr "-
r- _jjj_--ie- " d3K (A.35)
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= =

L_

£

which may be differentiated with respect to x_ and xj to give

02r 1 f fool KiKj e_iK.r daK

By' contracting the i and j indices we obtain

oo

c92r 1 1

o jOxj - f f f -R e-iKr d3K
--00

The Green's function may therefore be written as

1 ((_ij 2 0 2r )k -_- _ 2 0 2r

or

where the relations

1{Gij (r) - 26ij _ 6ij -
87r#r k + 2#

02r 2 02r 6ij xixj
-- - and r3

OXqOXq r OXiOXj r

obtained by differentiating r = x_/-_, have been used.

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

i

J
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Appendix B

Relationship Between Fourier Series

and Green's Function Approaches

In the composite material the total strain increment A¢T(r) is periodic in r and is defined

by the relationship

Ae_(r) = Ae°t + Aekl(r) (n.1)

where Ae°t is the strain increment applied to the composite's boundary which is equal to

the volume average of Ac_(r) over the unit periodic cell, and Acre(r) is the deviation or

perturbation from the average value due to the presence of the fibers.

From equations 84 and 85 the perturbed strain increment is given in the Fourier series

and Green's fimction approaches by the equivalent relations,

Aek,(r) = Vcc _ _ _'gk,ij (¢) Dijm_sA6:s (r') e ie(r-r') dV(r')
np =0 Vc

(B.2)

or

fffukuj (r -- r') Dij_sAF_ (r') dV(r') (B.3)A_kl(r)

V

We now show that these equations are equivalent and that the Green's function relation is

the PoissonsUm transformation of theFoUrier series relation.:

From the definition of gklm,_(_) in equation 54 we may write

gklij(_) --_ 1 (Mikl(_)_j_l 4- Mill(_)_j_k) (B.4)

or

where

1 (]_[i;1(¢1,¢2,¢3)¢j¢1__MiI (¢1,¢2,g_..j(¢,, ¢_,6) = (B.5)

27rn_

_i - _i _ Li (no sum on i)

_/(27rn1_ 2 (271n2"_ 2 (271n3 _ 2
V\ L1 ] +\ L2 ] +\ L3 ]

for i = 1, 2, 3. (B.6)

We may therefore write

.qk,ij(_)=gkl_j(_l(nl,n2,n3),_(nl,n2,n3),_3(nl,n2, n3)) = fktO(nl,n2,n3) (B.7)

The perturbation strain increment can then be written in the form

1 +_ ±_ _-_% fffA_;_.l(r)- LIL2L3 y_ _ Auj(nl,n2,n3) Do._Ae*,(r')x
_'_1=0 n2=0 n3=O Vc

/2rrnl, ,,, 2rcn2/ ., 2rna/x3_X_,,"_,))x ei_ -G-_ (_'-xi)+-G-2 (_2-x_)+%_-_ dxldx_dx_3' (B.8)
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or as

where

4-o¢ -4-oo 4-cc1

Ackt(r)- L1L2L3 E E E'hkl(nI,n2,n3)
'nl=O n2--=O n3--O

(B.9)

h,, (nl, 7/2, 7/3) fffDo_AE:_ (r') ×fkto

V_

[2"a'nl / i \ 2n'n2z i _ 2rcn3/ ,\"_

' _,--EV __' - xx) +--L7 t,_:-_2 )+-EE-3 (_3- % ) ) dx, 1 dx 2 dxt3Xe t (B.10)

By the Poisson sum formula (c]. Morse and Feshbach's "Theoretical Physics", [37])

-t-oc +o0 =1:o0

E E E'hk_(nl, n2,n3)
nl:O n2=O n3=O

O0

+o0 +_ +_ LIL2L3 ,3- e i= EEE
ml=0 m2=O m3=O --c_

(K1LI K2L2 KaL3_
× hkz \ 2r ' 27r ' _ ]

(mlK1LI+m2K2L2+m3K3L3) X

(B.11)

where the sum over the integers nl,n2,n3 is replaced by the sum over the integers ml,m2,m3

in the Fourier integrals. The sum over mi includes the case where ml = m2 = m3 = 0.

We now have the alternative sum,

:t:o¢ 4-o0 4-o0
1

-- LIL2L3 E E E' ha'(nl,n2,n3)
nl=0 n2=0 n3=0

+o0 +o0 4-o0 f if d3U e i(mlK1LI+m2K2L2+m3KaLa) Sklij (KILl

= E E E j__j (27r)z \ 27r
ml=O m2=O m3=O

X

K2L2 K3L3) ×' 27r' 27r

///D_jm_Ac;_ (r')ei(K'(_-_'_)+K2(::2-_'2)+K3(_3-_'3))dx_i dx_ dx_3
V_

(B.12)

or

Ackt(r) +o0 ±o0_ +S /7/3_dK Aaj \(K'L'27r ' K2L227r' K3L3_ei(Kx:'+K:::+Kaz_)×-_]
ml----0 m2=O 3=0 _o0

× fffD,,%A ;,(r') e-i(N*(*'_-'mn')+N=(z'_-maL=)+ga(_'_-man3)) dx', dx'2 dx_3
V_

(8.13)

Due to the geometric periodicity of the unit cell we may write

/ _¢ I I

A¢_* (r') = A¢* (x_,x2, x_) = A¢rs (x' I -- mlLl,X 2 - m2L2, x 3 - m3L3) (B.14)

and

dx_ dx_ dx_ = d (x_ - miLl) d (x_2 -

so that by making the change of variable

m2L2) d (x' 3 - m3L3) (8.15)

(x_i - mlLl,x'2 - m2L2, x_ - m3L3) = "(x,", x2," xz)"" = r" (B.16)
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we obtain

A¢kt(r) /f/ d_K (K1LI K2L2 K3L3_ ei(K,x,+K2x2+K3z3) ×
(27r)3fktq\ 2_r ' 2_r ' 27r ]

--OO

4-o¢ 4-00 :i=oo

rnl=O rn2--O ma=O Vc (rnl,m2,ma)

(B.17)

where the volume integration extends over the volume V_ (ml, m2, m3) of the unit cell whose

center is at the point (mlLl,m2L2,rn3L3). Since ml,m2,m3 range over all integer values,

the summation of the volume integrals extends to all the cells in the periodic lattice, i.e.,

it extends over the entire volume, V, of the composite medium. The expression for Aekl(r)

thus takes the form

f Tf d3K (KaL, K2L2 K3L3_eiK.r ×Aekl(r) = j j j (2:r)3 fklij 27r ' 27r ' 27r ]
--OO

× fffDij_sAe;8 (r")e -iK'r" dV(r") (B.18)
V

By interchanging the order of the volume and wave vector integrals and noting that r"

can be replaced by r' since it is a dummy integration variable, we obtain

f Tf d3K (K_L_
Az_.t(r) = fff dV(r')j j j (27r)8 fktij \ 27r

V --oo

K2L2 K3L3) iK.(r-r'),-,rn A ,' 27r' 27r e .ij_.z_e_e(r') (B.19)

(_',L1 K:L_ K3L3) in place of (hi n2 n3) in the expression forIntroducing k 2, , 2_ , 2. , ,

fAqij (hi, n2, n3) : gk,ij(_, (nl, n2, n3), _2 (nl, n2, n3), _3 (nl, n2, n3) ) (B.20)

then gives

gklij (_l ( KIL1 K252 K353_ (KIL1 K252 K353_ ,_3 ( K1L1 K252 K353_27r ' 27r ' 2:r /'(2\ 27r ' 27r ' 2:r / 27r ' 27r ' 27r /]

with
Ki Ki

K
and the perturbed strain increment takes the form

(B.22)

fTfd3g 1 (AIK!')A_k,(r) = ./f/dV(r') j j j (27r)3 2
[" __7

KjK_ +
MilI(_)

K 2
eiK'(r-r') Dm A_:*__,j_,____. (r')

(B.23)
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But, from Appendix A,

[Tf d3K M_;'(_)
G_k(r-r')=jjj (2r) 3 K2

--OG

e-iK.(r-r') : f _f d_u i_;_(¢)
J J J (271")3 K:

--OO

eiK.(r-r ') (B.24)

since G_k (r - r') = G_k (r'-- r), and therefore

02G,k(r-- r') = /ff d3K MikK(2_)KjKteiK.(r-r')
OxjOx_ -__ (_)3

(B.25)

Inserting the last relation into the expression for Aekl(r) then shows that

1 (02Gik(r - r')
Aek_(r) = -///dY(r') 5 \ OzyOxt

V

+ 02Git (r - r'))OxjOxk D_3_A¢_ (r') (B.26)

From the definition of the tensor Uklm_ (r -- r') in equation 83, we see that

r'

f//Uktij (r - r') D_j_A¢:_ (r') dV(r') (B.27)Aekl(r)

V

which is the result obtained with the Green's function approach.

The Fourier series expression for the perturbation strain increment is thus identical to the

Green's function expression and the two are linked via the Poisson sum formula.

w

P
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Appendix C

Poisson Sum Formula _

In Fig. 7 tile function f(x) = [(x-1 1 3iL)/sL] is shown on the unit cell extending from x = 0

to x -=- L. The corresponding function defined on the n th unit cell to the right is given by

f(x + nL) and the periodic function q(x), which is comprised of the functions .f(x + nL)

defined on all of the unit cells extending from x -- -oo to x = +oo, is given by

OO

q(x) = _ f(x + nL) (C.1)
n_--OO

Each function, f(x + nL),]sdefined only over the corresponding n th periodic cell and is taken

to be zero outside of the cell. Each function can therefore be represented as a Fourier integral

and the periodic function q(x) can be written as a sum of Fourier integrals,

OO OO

q(x) = _ f(x ÷ nL) = _ Fourier integral of f(x + hi) (C.2)
TI _-- -- O0 1'l _ -- 0_

By setting x -- 0 in both summations we obtain the Poisson sum formula. This method is

outlined at the end of this Appendix.

The Poisson sum formula can also be derived by expanding the periodic function q(x) into

a Fourier expansion and showing that the Fourier integral sum, when x = 0, is the sum of

the coefficients in the Fourier series expansion.

Since q(x) is a periodic function of period L, it may be expanded into a Fourier series in

the form

where

m

R

m

t

I
!

mm
mm

J

!

[]

|

co i 27rmx

q(x)= _ ame L (C.3)
rn ---- -- 0_ j

1 _oL i2_:mxtam=-_ e n q(x') dx' (C.4) m
Tile object is to show that the Fourier series

1 oo i2rrmx 9_0 L i27rmx tq(x) =-_ _ e n e L q(x') dx' (C.5) m
ITt _-- -- O0

r('presents a sum of Fourier integrals. This is easily accomplished by introducing the expres-
sion

into the Fourier expansion and changing the integration variable by means of the relation

y = x' + nL (C.6) i. !

In this way we obtain

q(x)= _ f(x+nL)=-_ _ e L _ / e L f(y)dy (C.7)

n=-cx) m=-co n=-oo y=(n-1)L _
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The exponential function exp(i21rmy/L) is a periodic function with period L, so that

i27rm(y-nL) i2_rrny

e L = e L (C.8)

If we set x = 0 and note that the sum over the integration limits is equivalent to summing

over the entire axis of x from x = -oc to x -- +oc, we obtain

_-_ 1 /_ _ i2_rml#q(O) = f(nL) = -L e -L f(y) dy
O0

?2_--_ ?n------O0

(C.9)

Putting L = 1 gives

q(O) = _ f(n) = f(y)dy (C.10)

and by changing the integration variable to K = 2Try�L, we obtain

L co KL

n=-co m=-co

(C.11)

In three dimensions this result takes the form

±co ±co +oo

_ Y_ f(nl,n2,n3)
nl_0 n2=-0 n3----0

O¢

ml =0 m2----0 m3=0 --co

(K1L1 K2L2 KaL3_
× f \ 2rr ' 2zr ' 2zr ]

e i(mlK1LI÷rn2K2L2+m3KaL3) X

(C.12)

which is the form used in Appendix B. The cubic function defined here for illustration purposes

has the property that the constant a0 in the Fourier expansion is zero, since fL .f(x) dx = O.

This term may therefore be omitted from the summation on the left and the summation signs

primed to denote the omission of the term with nl --- n2 = n3 = 0.

It is now possible to show that the Poisson sum formula follows from the Fourier integral

sum in equation C.2.

We have the Fourier integral sum representation

co °_ Ff(m) = _ f(y)6(y- m) dy (C.13)
CO

TT_.."r'---CO D'_--CO

where the Dirac delta function is given by the Fourier integral

1f5(y - m) = _ e_(y-m)z dz (C.14)
co

Then the Fourier integral of f(m) is

£ E1 e -imz dz e izy f(y) dy
f(m) = _ co co

(C.15)

w
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Putting z = 27ra gives

](m) = e -'_m_' da ei2_'_y f(y) dy
O_ O0

The Fourier series expansion which culminates in equation C.10 shows that

Z/(_) = ei_'_"y/(y)dy

so that equation C.16 becomes

(C.16)

(c.17)

Ff(m) = e-_2"m_" f(a)do_
O0

We may therefore write

f(m) = m_-_oof(m)= _ f(-m)= _ _: e i_'_m'_ f(o_)dc_

This is the Poisson sum formula in equation C.10, from which equations C.11 and C.12 follow.

(C.18)

(c._9)
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Appendix D

Integral Equation for Displacement Increment

In Neighborhood of Free Surface

The static equilibrium equation for a medium with elasticity tensor D_j'_kl is obtained from
equation 37 as

/ ,_..\

D TM 0{,A_,(r)) _ c9 {Dij_,Ac,k,(r) } (D.1)0%-7

in which Ag_(r) = Ae_t(r ) + Aekt(r).

In this equilibrium relation we will not assume that the strain increment Ag°t(r ) applied

at the surface of the composite is constant and will take it as a spatial variable. If we set

O {Pij_,Ac,k,(r) } (D.2)
Af{(r) -- Oxj

and note that

1 (O(AuT(r))

%

the equilibrium equation may be written in the form

0(AuT(r)) _

Oxk ]
(D.3)

o=(AuT)_ Af, (D.4)
Dijmkl" Oxjoqxk

where the symmetry of Dqmkl with respect to the indices k and 1 has been used. On denoting

the operator _',_ by the relationship

(92

:Fiz = Di3"_kzi)x_Oxk (D.5)

the equilibrium equation is

Now consider the integral

.T'_,Au T = Afi (D.6)

I(_b,¢) = f//¢i(r')_'_jCj(r')dV(r')
V

(D.7)

for any two field variables ¢i(r) and gA(r). These field variables may be tensors of any rank.

For example, if ¢ and %b were second rank tensors, then I(¢, ¢) would be a second rank

tensor integral

¢) = fff¢_ (r')_j¢3q (r') dV(r')I,q(¢, (D.8)

V
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From tlle definition of the operator Jrij we have

0 (OOA_r')_ dV(r')
I(¢, ¢) =//f¢, (r') D_7,qj Ox,v _, Oxq ]

V

(D.9)

and since

0 ( (9_bj (r')) 0¢i _')D_pqj O_bj (r')Ox'p ¢i(r')D_qj OXq - OXp OX_q

the integral becomes

0 {0¢j !r') _
+ ¢_ (r') D,_j 0---_; \ -Oxq /

(D.10)

///0 ( O¢_j_')) dV(r')- fffO_(__r') m O¢j (r') dV(r') (D.11)I(_b, ¢) = _x_ ¢i (r') D_7,qj Oxq ] JJJ Oxtp Dipqj O---Xq "
V V

The first integral can be transformed into a surface integral via Gauss' divergence theorem,

so ttmt

O¢j (r')dS(r') - f//O¢_,(;')D_vq _ 0_2' ) dV(r') (D.12)
I(4), ¢) = np (r') ¢, (r') D,%j Ox_ 0 p q

S V

By interchanging the arguments ¢ and ¢ it is evident that

OCj (r') dS(r') fffOC,(r'lD vqjOC_j _') dV(r') (D.13)
ffjj np(r')¢,(r')D_,qj Ox_ -JJJ Oxp Oxq

I(¢, ¢)

S V

Now the elasticity tensor Dim _ is symmetric with respect to its indices, so that the interchanges

ip _ pi, qj _ jq, ip _ (qj or jq), qj _ (ip or p/) (D.14)

leave the elasticity tensor unaltered. This shows that the volume integrals in I(q_, ¢) and

I(¢, 4)) are identical, so that Green's identity ([38], page 434) can be written as

0¢_j(__r')_ dS(r') (D.15),_ OCJo__xq(r') ¢, (r') D_mj Oxtq ,I[(¢,¢)- I(_b, gb)= f/Mnp(r') ¢i(r')Dwq j
S

or

V S

Now choose the field variables ¢ and _ as a vector and second rank tensor in the forms

¢, (r') = Au T (r') - Au ° (r') = Au, (r') (9.17)

and

¢,7 (r') = Gij (r - r') (D.18)

where ¢_ (r') is the perturbation displacement increment Aui (r') and Gij (r - r') is the Green's

tensor function satisfying the differential equation (cf. Appendix A),

U_jGjk (r - r') + 5_k6 (r - r') = 0 (D.19)
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The integral relation then becomes

///{(Au T (r')- Au ° (r')) JCijGjk (r - r')-
V

- Gik (r - r')9v, j (Au T (r') -- Au ° (r')) } dV(r')

OGjk (r - r')= ff np (r') (Au T (r') - Au ° (r')) D,_mj Ox'q
S

(o( u;(r'))
- Gik (r - r') Di_mj [ Ox_

_ 0(Au° (r')) _ dS(r') (D.20)

Replacing _jGjk (r - r') by -6_k5 (r - r') in the first term of the volume integral gives

Au/(r)- Au°(r) +///a,k(r- r')_j (Au T (r')- Au ° (r')) dV(r')
V

{ (0(AuT (r')) 0(Au° (r')))= ffnp(r') Gik(r-r')Dipqj \ -_Xq -- OXq --
S

OGjk (r -- r') } dS(r')- (_T (r')- _0 (r'))D,% Ox;

From the definition of the operator _i3 we obtain the relation

_j_uy(r) = Aft(r)= _ {D_%a_,(r)}

and by inserting this result into the integral equation and noting that

(D.21)

(D.22)

O(Au ° (r')) 1 (0(Au°,(r')) O( Au° (r'))) m oDi_pqJ O--xq = Di_mj 2 \ -_Xrq + -Ox_ = DwqjAeq3 (r') (D.23)

we find that the total displacement increment is

fff o (r,))}dV(r')+AuT(r) = Au°(r) - V,k (r- r') Ox--_j
V

+ ff n v (r'){Gik (r - r')Dimpqj (Aeq r (r') - Ae°j (r')) -
S

_ _ Dm OG_k (r - r')
(Au T (r') Au ° (r')) ,mJ _gx_ } dS(r') (D.24)

In the volume integral an integration by parts with Gauss' divergence theorem using the

relationship

OGik (r - r') = OGik (r -- r') (D.25)

Ox_ Oz_
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gives

///y Gik (r - r') _0 {Do_" (As, s (r')- AG° s (r'))} dV(r')

-- ff/O-_x_.{G,, (r- r')D,% (AG* .(r')- As °.(r'))} dV(r')-
V

_ JJJ[ffOGi_-Ox_(r- r') Dij..m (Ae*. (r') - A¢ °.(r')) dV(r')
V

=//nj (r')Gik (r - r')D,% (AG* _ (r') - A¢°_ (r')) dS(r') +
S

+ JJJff[OGik-O--xj(r- r') Dijrsm (AG* s (r') - Ae°s (r')) dV(r')
v

(D.26)

This result may now be substituted into the integral equation to produce

Au/(r) AuO(r)-JJJfffOG'kO-_j(r - r') D,j..m(AG*, (r') - Ae °. (r')) dV(r') +
V

+ f/nj (r'){ Gik (r -- r') Dijmrs (AeTs (r') - AG* 8 (r')) +
S

+ (Au T (r') - Au ° (r')) D_w80G_k_.Oxr(r-- r') } dS(r')
(D.27)

In the first two terms of the surface integral we observe from equation 35 that

nj (r') Di% (AeT_ (r') - Ae:, (r')) = njAa 0 (r') = At, (r') (D.28)

represents the incremental surface traction on the surface of the composite. Equation D.27

represents the well known Somigliana identity ([38], page 93) for the displacement increment.

In the case where the composite is assumed to be of infinite extent the surface integrals in

the preceding integral equation vanish, and if Ae°_ (r') is assumed to be spatially constant,

the total displacement increment is given by the relationship,

Au/(r) = AuO(r) _ fffOGik (r - r') ,_,m A .-Oxj LJO.._G. (r') dV(r')
V

(D.29)

which corresponds to equation 79 and is the form used in the main report. However, equa-

tion D.27 must be used when the surface is not infinitely removed and if A¢°_ (r _) is not

assumed to be constant.

In a finite eleinent context it will normally be assumed that the fibers are very small in

comparison with the dimensions of the finite element. At the Gaussian integration point in

the finite element it is then permissible to neglect the contribution from the surface integrals

since the surface of the finite element is assumed to be many periodic cells away at "infinity".

In some situations, however, this may not be a valid assumption. Some turbine blades and
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turbine engine combustor liners are fabricated from thin sections in which the central passages

are hollow to allow cooling air to pass through the component. In the thin cross sections of

such components the surface integrals must be retained in the constitutive formulation.

Suppose, for example, that the total displacement increment at the node points of a finite

element are given. From these nodal values and a knowledge of the element's displacement

interpolation functions it is then possible to compute the total displacement increment Au ° (r)

on the surface of the element and the total strain increment As°_(r) at any point. Since

Au T (r') -----Au_° (r') on the surface of the finite element, the last term in the integral equation

vanishes and the total displacement increment is determined from

f f [ OGik (r -
Au_(r) - jjj -07j r') D_, (As;, (r') - Ae°, (r')) dV(r') +

V

+ If n, (r')G_k (r - r') D_,_, (AeT, (r') - Ae*, (r')) dS(r')
S

(D.30)

in which the terms in the surface integral represent the contribution to the total displacement

increment due to the incremental traction,

Ati (r') = nj (r') Dijm, (AcT, (r') -- Ac** (r')) (D.31)

on the surface of the element. This surface traction is needed to maintain the displacement

increment equality Au_ (r') = Au ° (r'), which is imposed at the element's surface.

By differentiating Au_'(r) with respect to x_ and xt and taking half the sum, the total

strain increment is subject to the integral equation

A_V(r) = Ae_t(r) + ff/Uktij (r - r') Dij_, (Ae* 8 (r') - Asr°s (r')) dV(r') +
V

+ ff n, (r') _1 _,(0Gik(r-r')oxxt + OGil(r--r'))Oxk nijrsm (AeT (r,)_ Ae;, (r')) dS(r')
S

(D.32)

in which

D_jmk,Ae_, (r ') = Dij_,Ack,(r' ) --SDijkt(r')[As T (r')- Ack, (r')] (D133)

and this integral equation should be used for thin sections of composite material where sur-

face effects are important. This implicit integral equation is similar to that for the infinite

medium but contains a correction term for the surface effects in the last integral. This surface

integral will become less important--due to the derivatives of the Green's function--when

the integration points r' are far removed from the field point r and it vanishes for an infinite

medium.

In the preceding development it was assumed that the displacement increment Au ° (r') was

known, by interpolation with the element displacement polynomials, from the nodal values.

This forces the incremental surface traction Ati (r') to adopt a periodic distribution in order

to maintain Au r (r') = Au ° (r') on the surface of the element. We could, alternatively, assume

that the surface traction increment is zero on the free surface of the element, in which case
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the total displacement increment AuT(r) will exhibit a periodic variation on the the surface

and the surface takes on the appearance of a frilled structure.

If we therefore assume that the finite element is thin (see Fig. 8); that the surfaces arc

free of surface traction; and that the surfaces at the ends of the finite element are sufficiently

far removed from the Gaussian integration point, the first term in the surface integral in the

integral equation is zero and in lieu of equation D.30 the relationship for the total displacement

increment now takes the form,

T
Au k (r) fffOG,k(, - r') ,n (Ae:, (r') 0 (r')) dVCr') +

Au°Cr) - JJJ Oxj D+Jrs - Aer+
V

OGsk (r- r') dS(r')
+//nj (r')(Au T (r')- Au ° (r')) D_j_ Ox¢

S

(D.34)

The solution to this integral equation gives a periodic total displacement increment, AuT(r),

which, on the surface of the Composite, will exhibit frilling.

It is clear that during the finite element analysis frilling will not occur in the element. The

interpolation functions normally used in isoparametric elements are linear and quadratic, and

cannot adopt the required periodic behavior. However, the stiffness of the finite element--as

computed at the Gaussian integration points with the composite constitutive model--will

reflect that the fact that the constitutive properties are computed as though the element were

free to take on a frilled appearance. When the "damage critical" strain-temperature history is

used to determine the stress-strain history variation throughout the unit periodic cell outside

of the finite element program, the preceding integral equation will allow the frilled appearance

of tile composite to be calculated.
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Appendix E

Evaluation of the Eshelby Tensor

The Eshelby tensor Sipl_ is defined by the relation

1{0. "'sis }S ,,m= o, , iiic,,<rr) dV(r') + Ox-_xk Gi_ (r - r') dV(r') D3k_
V

(E.1)

or as

Siplm _-- ifiUiprs (r - rI) dV(r') (E2)
V

where the field point r lies within the volume, V, and where the volume extends over an

infinite cylinder of radius a in a medium with elasticity tensor D_jkl. Although the Green's

function for transversely isotropic materials is known [24], it is more convenient to work with

the Fourier integral representation of the Green's function as given in Appendix A.

Introduction of the Fourier integral representation,

SfS d3K M/;1(¢) e -iK(r-r') (E.3)
Gik (r -- r') = (21r)3 K2

where (i = KitK = K,/K_q_qKq, into one of the volume integrals in the definition of Siplm

gives, on reversing the order of the volume and wave vector integrations,
i

02 £ff

Lkgij -- (03c--_xg///Gijj_._, (r - r') dY(r') (E.4)

or

02 /fi d3K Mi71(_) e-iK'riiieiK'r' dV(r') (E.5)Lkgij -- OxkOxg _ (271") 3 K 2 v

The Laue interference integral [39] extends over the cylindrical volume and can be written as

I = fffe iK'r' dW(r/) = SAY ei(K'x_l+K2=_+K3=_3) dXtl dx/2 dxl3

v v

(E.6)

Let x l' = _ocos 0, x 2'= _osin 0. Then in cylindrical coordinates

I= /,,o ia f27reiKax,3 ei(KlecosO+K2esinO) dx'3 odod8
oo dO dO

Since

f__ e 'g3x'3 dx' 3 = 27r5 (K3)
O0

where 5 (K3) is the Dirac delta function, the integral takes the form

f° f=" i(KlpcosO+K2psinO) pdod8I= 2_*(K3) jo Jo e

(E.7)

(E.S)

(E.9)
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dq
q , d_o- Then, if K-- v/K_ + K_,

Lete = V%_+ _.i _/_,_+ Ki
f qKl cos 9 qK2 sin 8

' 2 2+_
27rS(Ka) f_K f2'_ e _,_ _,] qdqd_ (E.10)

I _ vrg_+ Ki _o J0

K1 K2
If we now set - cos 9', = sin 9', then

v_,_+ _ _/_ +_

2rti(Ka) f"K f2_eiqCos(O-O' ) qdqdO (E.11)

Since tile integration extends over a whole circumference, it is immaterial where the origin

of 0 is placed. The integral may therefore be written as _

27r5 (K3)fo'Kqdqfo2"eiqCO_OdO

2_6(K3) ffK
-- v/K_ + K_ qdq21rJo(q) (E.12)

fff daK Mijl(¢d) c_2e -iK'r
Lkgij _- (27r) 3 K 2 OxkOxg

--00

g_ a
I -- 47r26 (K3) a

where J0 and J1 denote the usual Bessel functions of order zero and one.

The integral Lkgij can therefore be written as

4_r25 (K3) a

(E.13)

(E.14)

Now

so that

2e-iK'r -- - Kk Kg e -iK'r
OxkOxg

(E.15)

Lkgij
K_ + K_ + K_

_/K_+K_
(E.16)

If k = 3 or g = 3, the Dirac delta function 5 (/(3) gives zero values for the integral. Hence,

_hc non-zero values of Lk_ij are given by k-- 1,2 and g-- 1, 2.
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Invoking the sifting properties of the Dirac delta function, viz.,

_ f (K_,K2, K3)5(K3) dK3 -- f (K_,K2,0)
O0

(E.17)

then gives

OO

_ 1 ff dK_ dK2 M_] _ (_, _2, _3Lkg_3 27r

where the unit vector _ is now defined by the relations

e-i (Klxl +K2x2) a

v/K +
(E.18)

K_ /(2
¢1 - , ¢2 -- , _3 =0 (E.19)

?K_ + K 2 ?K_ + K,_

If we put

K, K1 /(2 K_
_1 - - - cos 9, _2 = -- - sin 9 (E.20)

K + K  /K1+ Kg

and set xl --- r cos ¢, x2 -- r sin ¢, then in cylindrical coordinates,

Lkgij -- 27r .Io Jo K dK d9 Mij (_1,_2) _kL,ac"* _-_n_¢os(e-¢) aJ_(aK)K (E.2_)

The integration with respect to 9 extends over a complete circumference, so that

1 2_ d9 _o °° ae -iKr cosn_,; -- 2r fo M_ (_,¢2)_k_ _ J_(ag)dK (E.22)

Since Sip_,_ is real, the real part of the preceding integral involving the integration over K is

j_0 °°
N = acos(Krcosg)J_(aK)dK (E.23)

Setting z = r cos g, and noting that cos(Kz) = cos(-Kz), we need be concerned only with

positive values of z. Now if the field point r lies within the cylindrical volume, then 0 <: z ___a.

But, from Gradshteyn and Ryzhik [40],

fo _ acos{sin-'(z/a)}
g = acos(Kz)J_(aK)dK = __ z_ for 0 < z < a (E.24)

If _b = sin-_(z/a), then

a cos ¢ cos ¢ cos ¢
N- - . - = i (E._S)

[_ cost
V/_ - Z_
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Thus,
1 2_

Lkgij -- 27r fo M,;' (_1, _2) _k_g dO (E.26)

independent of position r in the cylinder as expected from Eshelby's result. In this integral we

have (1 = cos& _ = sin0, Ca = 0, Mi; 1 (_1,_2) = (_mDmijn_n) -1 and k and g are restricted

to the values 1 and 2. The Eshelby tensor may now be written as

Sw/m = l-Dkjlm{fo27rMpji(_l,_2)_i_kdO+fo2_rMi-jl(_i,_2)_p_kdO} (E.27)

When _3 = 0 the Christoffel stiffness tensor for a transversely isotropic material, MO, and its

inverse, lrt_[i-_1, (which applies to the homogenized medium of a composite with fibers arranged

in hexagonal arrays) have the component forms

MI ' -- 2 1 (_111 __ 91122) _2= Dl111¢1 q- _ 1

= 1 (Dllll -31- 91122) _1_2M12 = M21

M,3 = Mal = 0

-- 2
-- 1 (91111- Dl122)ffl 2 + O1111ff2M22 -

M_3 = M32 = 0

M33 _- D1313

(E.28)

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)

(E.34)

(E.35)

(E.36)

(E.37)

(E.38)

(E.39)

and

2
_12(Dllll -- Dl122) _12 + D,mff_

MIS 1 =
1Dalll (D1111- 91122)

M_I = M_ 1 = Dllll + Dl122

MI_ 1 = Ma_ 1 = 0

D, lllC? -°r- 1(91111- Dl122)_22
M_ 1 =

½Dllll (Dl111- Dl122)

M_ 1 = M_ 1 = 0

1
M£ 1 -

_)1313

The Eshelby tensor can now be determined by integration in the form,

5Dl111 -Jr- Dn_2
$1111 ---

8Dml

_2222 ---- _1111

3D1122 - DI111
$1122

8Dim

Dl133
$2233 _

2Dl111

(E.40)

(E.41)

(E.42)

(E.43)
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$1133 = S22aa (E.44)

82211 __._ 81122 (E.45)

81212 -- 81221 : 391111 -- 91122 (E.46)
8Dllll

-' (E.47)82323 = 82332 -7- 81331 = 81313 = 81313 --

The Eshelby tensor for tetragonal materials--which applies to the homogenized medium

of a composite with a square array of fibers--is currently being worked out.

The results for an infinite isotropic cylinder may be recovered by taking

Dllll = 2p(1 - u)/(1 - 2u), Dl122 ---- 2#u/(1 - 2u), and D,,33 = 2#v/(1 - 2u) (E.48)

where p is the Lamd shear modulus and v is Poisson's ratio. For an infinite isotropic cylinder

the Eshelby tensor reduces to

81Xl1 - 5-4u (E.49)
_._ 8(1 - u)

_ (E.50)_ 82222 -- Sllll

4u - 1 (E.51)
_i _ 81122

8(1 - u)

u (E.52)82233 --
2(1- v)

81133 ---- 82233 (E.53)

82211 = 81122 (E.54)

-- S1212 _-- 81221 -- 3 -- 4u (E.55)
... 8(1 - v)

82323 81313 81331 _" 82332 -- I (E.56)

The Eshelby tensor for both isotropic and transversely isotropic materials can also be

deduced from equations 17.27, 17.30 and 17.31 of Mura's book, [24], by setting Lo= 0 in his

notation.
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Appendix F

Proof that Uijkl(X- y) -- Uijkl(Y -- x)

From the definition of Uokl(X -- y) we have

1 (02Gik(x - y) 02Gjk(x - y))Ui, k,(x- y) ---- --_ \ OxjOx, + O-_-_iO:_

But OG_k(x-- y) _ OGik(x- y) so that
Oxl Oyl

02Gik(X -- y) 02Gik(x - y)

OxjOxt OyjOyt

The operator can therefore be written as

1 (O_C,k(x - y) + 02Gjk(x- y))Uiyk,(x - y) = -2 _, OyjOy, _yiO_

But G_k(x- y) = G_k(y- x), so that

u,_(x- y)= -_ _ o-_oV, + o-_,o_

or

Uijkt(x- y) = Ui_kl(Y- x)

as required.

(F.1)

(F.2)

(F.3)

(F.4)

(F.5)
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Appendix G

Differentiation of Singular Integrals

In the text and Appendices we have taken derivatives of the volume integrals and written,

for example,

/kq
0 ///OGik (r - r')- Oxq Oxj D_j_Ae*_(r')dV(r')

02Gik (r - r'),-,m -- ,

V

(0.1)

If the integration volume V contains the field point r the integrand OGik (r- r')/Oxj is

singular at the point r' = r, and the above operation in which the derivative is taken inside

the integral must be treated with caution, as pointed out by Bui, [41] and Born and _Volf,

[42]. We should, in fact, isolate a small spherical volume, D, about the singular point r' = r

and evaluate the integral according to Bui's procedure, viz.,

[kq
_ fffO2G,k(rzr')_m _.
- J J J OxqOx_ JJo_z_e_ (r') dV(r') +

V-D

C9 .If/OGik (r -- r')
"_ _Xq_b_ OXj DijrnrsAe*rs (r') dY(r')

[ 02Gik (r__Z r')
= / / J OXqOXj D,j_Ae:_ (r') dV(r') -

V-D

o (oa,_ (_- ¢))- fff k dU(r') D_.AG*_(r )
D

(G.2)

where we have used the fact that, if the spherical volume D about the point r is small enough,
the strain increment can be considered constant and taken to have the value at the center of

the sphere, A_(r). The integral may therefore be written as

[kq

V-D

_ f/_ (¢) oa_k(r - r') aS(r') D_%A_:_(r)
Oxj

S

(G.3)

The first volume integral is evaluated in the principal value sense as D _ 0.

Rather than using the preceding operations outlined by Bui, we may treat G 0 (r- r')

as a Fourier integral. The preceding operations are not then necessary and the derivative

can be taken inside the integral. That is, equation G.1 is valid when the Fourier integral

representation of the Green's function is used.
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To demonstrate the validity of equation G.1, consider the singular integral used by Bui.

He considers the derivative of the integral

i; dt 1 - xF(x) = ,t-x- --l°gtl--7-;_ (G.4)

where -1 < x < 1. Since the integral is known, its derivative is simply found as

dF 1 1
- (C.5)

dx x-1 x+l
T :

Notice that the integrand is singular at the point t = x. Bui demonstrates that in order to

take the derivative of the integral we must write it in its principal value sense,

(/ ]=-_ dt + (G.6)F(x) = t - x t - x
t=-I t=x+e

and the derivative dF/dx must be evaluated by noting that both limits and the integrand are

functions of x. Using Leibnitz's rule for differentiating an integral whose limits depend on x

gives

dF

dx _ lim(d(x--e) 1 +i_-_ d ( 1 ) )_-_o \ dx x-e- x 1 d--x _- x dt +

+lim( d(x+e) 1 +L_ d (t-_x) )dt_--*o dx x + e - x +_

= !im e -1- L1 (t ----X) 2 -_- L+e (t --X) 2

r111/!Ln_ -- j.t---__j_ 1 - Lt--_--_jx..Fc/
(c.7)

or
dF 1 1

- (c.s)
dx x-1 x+l

To avoid the convected terms which arise from differentiating an integral whose limits

depend on x, consider representing the integrand as a Fourier integral. We have, from Grad-

shteyn and Rhyzik [43], the Fourier integral representation,

1t - x -- vff_ z sgn(K) e -iK(t-=) dK (G.9)

The singular integral F(x) can then be written as

i_ 1 1S'_/-_"= dt z sgn(K) e -iK(t-=) dK

1 _ /_ 1- v/-_f__ _isgn(K)eiK=dKi_le-iKtdt (G.10)
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If we now differentiate with respect to x in the normal manner we obtain

dF _ 1 ['_

dx

_1 F
lff

e_iK t 17r
dK ,/"z sgn(K) e iK_ iK

V2 (-iK). t:-I

dK _ isgn(K) eiK_ (eiK - e -iK)

dK _r_isgn(K) (e iK(_+') - e -iK(1-_)) (G.11)

A comparison of this integral with equation G.9 shows that this Fourier integral has the

inverse relation,
dF 1 1

- (G.12)
dx x- 1 x+l

which is the correct result.

Thus, by expanding the integrand of a singular integral as a Fourier integral, reversing the

integrals, taking the normal derivative, and inverting the resulting Fourier integral, we obtain

the correct derivative of the singular integral. It is then clear that if the Green's function is

represented in Fourier integral form the procedure of Bui is not required. In fact, the Eshelby

tensor in Appendix E is obtained by taking the derivative of the Fourier integral, and the

correct result is obtained.
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Appendix H

Origin of Self-Consistency

Many researchers in the mechanics literature suggest that the self-consistent method has its

origins in the present century. It would appear that the method is, however, very old and

has its origins in the last century. In the Lorentz-Lorenz theory ([42], page 87 and [45]) of

1880 the electric dipole moment p in a dielectric is related to the electric field E' by the

constitutive relation p = aE', where c_ is the polarizability. The polarizability a is related to

the refractive index n and the number of molecules per unit volume, N. If E is the mean or

volume averaged field applied to the dielectric the actual field at any point is given by

4rN

E' = E + _p (H.1)

where 4uNp/3 denotes the perturbation or deviation from the average electric field. As shown

on page 85 of reference [42] this value is estimated by smearing the effects of the molecules

outside a spherical volume enclosing the point at which the field is observed. An analogous

formula for statical fields had been derived even earlier by Claus•us in 1879 and Mossotti in

1850.

Twersky [44] observes:

In the biography of John William Strutt (third Baron Rayleigh) by his son Robert

John (the fourth baron), the son quotes the father on the verse that faces the ini-

tial contents page of the first four of Lord Rayleigh's six volumes of Scientific

Papers: "When I was bringing out my Scientific Papers I proposed a motto from

the Psalms, 'The works of the Lord are Great, sought out of all them that have

pleasure therein'. The Secretary to the Press suggested with many apologies that

the reader might suppose that I was the Lord." The Secretary need not have been

so apologetic. The second verse of Psalm 111 should have been augmented with

the next three lines: "His work is honourable and glorious, and his righteousness

endureth forever. He hath made his wonderful works to be remembered." Depart-

ing from King James' translation, we may read in the Hebrew of the last verse

of this psalm the most important of all the Rayleigh principles of mathematical

physics .... that the wise beginning of work in this field is to assume that the prob-

lem had been considered by Rayleigh and to study his works: "The beginning of

wisdom is reverence for the Lord; very good sense have all who do so."

Rayleigh [451 tackled the problem in his paper "On The Influence of Obstacles Arranged

in Rectangular Order Upon the Properties of a Medium" and was probably the first person to

define when the self-consistent method, viz. the Lorentz-Lorenz formula, could be expected

to break down. At the end of his paper he states:

The general conclusion as regards the optical application is that, even if we may

neglect dispersion, we must not expect such formulm as (the Lorentz-Lorenz equa-

tion) to be more than approximately correct in the case of dense fluid and solid

bodies.
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FIGURE 1, - TURBINE BLADE WITH PERIODIC MICROSTRUCTURE.
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FIGURE 2. - UNIT PERIODIC CELL FOR LAMINATED COMPOSITE.
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Abstract

This work is concerned with modeling the nonlinear mechanical deformation of

composites comprised of a periodic microstructur¢ under small displacement condi-

-2 : tions at elevated temperatures. The practical motivation for such work stems from the
- - need to design and optimize new multiphas¢ materials and to predict their micro-

_._ mechanical and bulk material behavior under in-service thermomechanical loading
conditions.

Two different methods, one based on a Fourier series approach and the other on a

• Green's function approach, are used in modeling the micromechanlcal behavior of the

composite material• These two methods are shown to be equivalent to each other via

the Poisson sum formula_ Although the constitutive formulations are based on a

micromechanical approach, it should be stressed that the resulting equations are

• '" .......... " " ." ' • , .'. " . _olpme_a.v_ra.ge_.to.prod..u_ o:vr,rall _._. _,ve"_co_nstitutjv¢ r_lation,_ which (.elate the-

bulk, volume averagei:l,str_-tssm,._re:a'entto th* balk.volul,adaveraged,s't_mmere_'.

ment. As such, they are macromodels which can be used directly in nonlinear finite

element structural analysis programs.

•_, 1. Introduction

°.... _° _..,•. o °" , • .

K,,

The ultimate objective of this work is to produce a computer program to

analyze the heterogeneous stress and strain history variation at the "fatigue

critical" locations of a composite structure operating at elevated temperatures.

This paper describes some of the theoretical foundations for that program. A

mesomechanics (Haritos et al., 1988) approach is adopted which relates the

w
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• et ticdu_: tet6 its in,seiddce"". ' =":....... .: "............ . :.<. =,

-- -.... ma_oscopic behavior.... • . , .......
i _._:':._....'.:.::..,,..>_:....,..:......."i _"_Ofiipr_h_fis{ve'"apipli_tfon"of_icrr_eL'hhiiic_to"meehanicaJ;de:for-."-_:.:.,.,.' :. "" " ....

_ mation problems is given by Mut:a (1982) in his book Micromechanics of

:-- Defects in Solids. The composite materials in which we are interested have

fibers which are closely packed together in periodic arrays. Pictures of metal

.:- :::,:.::._:::.,.>.i,., .C ,._:., ..... , :._,,matfx_cornpositcs (tungstc_-fibcr,.rci_or, ccd:_pcr.aJl..oy.s) which, exhibit a ......- - . .......... . . _-..::.. . ..._-.L .L: ..: .- i.._, ._,.?..,_.'." .",
.. _..i . . periodic microstructure, can be found.in the article by Pctrasek et al. (1986).

S_mr_oih'posit s'_i'¢_aetu fly:comprised ofaperi di_cm_crdstnic(ur_ first ".... ":_.'" e a " o w • ...'" .'... . . ..:....... . ..

others are possessed of an essentially randomly distributed microstructure.

When the fibers in a composite material occupy a large volume fraction of the
--" material, the induced deformation in one fiber interacts with and alters the

induced deformation in the neighboring fibers. When the fibers are densely

• packed the interaction effect becomes dominant and must be accounted for
in the constitutive formulation.

Nemat-Nasscr et al. (1981, 1982, 1983) have exploited the mathematical

simplicity of a periodic microstructure in order to develop elastic, plastic, and

creep constitutive models for composite materials. The assumption of perio-

-- dicity allows the heterogeneous stress, strain, and displacement fields to be

expanded in a Fourier series, which greatly simplifies the ensuing computa-

tions. This technique fully accounts for the interaction effects between neigh-

boring fibers. Even when the composite is comprised of closely packed fibers

distributed at randgm,.the method gives accurate results (Memat-Nasser et

" " ""_ ........ " "..":.-..:.r'-.>:.:..it/,,_:lgg2}ft,..the., effecti.vc "cl_tk'ity:.tcmsor,:.Wl_m..de. _el_paek.gd,,fi .l@.rs_qy_,..; ..-.:.,,,.. ::..,.-,::.-....:.., ,.,..., ...... . :...
_ a large volume fraction of the composite material, these interaction effects play

a dominant role and must be included in the calculations. It appears that
" -.'_. :.. " . . ..inclusion of/he ittteraetian effe.cts ca_t be as, or more, important than inclusion

• o , ..... . . . . . .., . ._ ..... _.... ... .° . . . ° .... ,..

t_ of the random nature of the microstructure when the fibers occupy a large ......
volume fraction of the composite material.

The nonlinear constitutive behavior of composites with a periodic micro-

structure can also be treated with a Green's function approach as shown in

:-: the expositions be Gubernatis and Krumhansl (1975), Korringa (1973), Zeller
and Dederichs (1973), and Barnett (!971, 1972). Here, the periodic heteroge-

neous material property variation_due to the fibers_is treated as a fictitious
body force in the matrix material The Green's function is used to evaluate the

displacement due to a unit point force in the matrix material, and the actual i
displacement and any .point in the composite can then be determined by ]

- summing (integrating) the effect due to a volume distribution of fictitious 1
periodic body forces, i

Dvorak (1986) and Dvorak and Bahei-E1-Din (1982, 1987, 1988) have also _

made great-progress in modeling the micromechanical behavior of nonlinear

-:_. periodic composite materials and are embarked on a eonbined experimental
and theoretical effort.

Work on the theoretical foundations behind the homogenization of micro-

mechanical constitutive models to produce bulk macroscopic models has

-_ Wiiiil"i- ;. " ".'. " "
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._ i..!;:..:..:.._.:::_,::_::..!:::._::.i_.,_:, ?:::: :.i-: :,:: :_:_/::!::,.: :..... .... .-k ¸ .: .. ,- .k i :: : . i

.: .=.:: _ ..... :,..,,:.:.......... .",+ ._ :, Equivalence of Green's Function and the Fourier Series R.ept'e.selatation 53"/
' '_ ?_":'__"" ::!-:_/-_"!_......_:'_!i_..'_I _:_ ...._- :'"i i:i _ ..... ,. _.i-,._,. _,-.--....... .....

_'..: .... _ ...... _ .been underway i!a Erance b_ Devd_s and L_o_ (1987), Duvaut (1988), Renard " "
• . and M_trmomer (1987), E_ne a/ld LX,'guflton. (1982),: ,ta_neO98:4,. t986),:and._ ...-:. ..::.., ...

Sanchez-Palencia (1980, 1985).

Aboudi (1987) has recently developed a macroscopic formulation for

periodic composites based on volume averaging Bodner's viscoplastic con-

_i '!" "" ":'"_:" " : -: _".... ,,.Stituti,_e model (Borne& 1.9.87)9v_r .t.he.u.tdt txriodic cell, but the method is ._
- . • " . " " " " ." ...... "" " "'l'" ""'",. "" ..... : _0 :o..... ". . ,; "'" ,.-',_ ....,.',_ ...." " _j. _.', -7_..k.

....... .. general and _s not r_tncted to any parhcular const_tuhve model. Tfi.ts work '_" " "

" -":'" :'-"-":. " " .. "expaiads: ihehrti:r0getieom displeement.thr0t_ghout.the constituent phase.-. _.... .......,. , .......
of the composite material as linear and high-order functions of the coor-

dinates. Good agreement with experimental results was obtained by this
=" method.

A more general approach is adopted in the present work, where the dis-

,_ placement is not retricted to linear or quadratic variations throughout each
_,, constituent phase, but varies according to the "exact" theory of an infinite

periodic composite.

The purpose of the present paper is to outline briefly the Fourier series and
Green's function formulations for the nonlinear constitutive behavior of vis-

-- coplastic composites comprised of a periodic microstructure, and to show that

the formulations are equivalent by deriving the Green's function representa-

tion from .the Fourier series representation using the Poisson sum formula.

Further details concerning the formulations canbe found in a recent report

(Walker et al., 1989).

t,.a

2. Theoretical Modeling Approaches

A periodic composite material is supposedly acted upon by an imposed strain

increment Ae° and responds in bulk with a stress increment A_r_. These values

are then equated to the respective volume averaged quantities in order to

L obtain the "effective" constitutive relation for the composite material, i.e.,

A,_ = A%(r) dV(r) and At_ = _ A_S(r) dV(r). (2.1)

__-= v, v,

In Section 3 it is shown that the volume averaged or "affective" constitutive

relation for the composite material can be written as {

. o [ 1}= Dij, tAe,_ D_,Ac,_(r) - _SD0_(r) ge_r_(r) - Ac,_(r) dV(r),

(2.2)

where V_ is the volume of a unit periodic cell in the composite material, A_r,(r)

is the total strain increment at point r in the periodic cell due to the imposed

uniform total strain increment Ae°_ at the surface of the composite, and Acu(r)
I

is the strain increment at point r in the periodic cell representing the corn- {

(,_._ ?OOR QUALITY
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•.:- .... :. .,: ...... posiCe_ and:iAc_(rL is.:.tbe..strain..,i, ocrem, cat._aL po, in[ :_:..i._.. t..h¢ _odie. eel/.: . ..... ' .....
representing the deviation from isothermalelastic ix'havior, The fourthrank" """' "" .......... . ._.,i-,,:: ...... " ,... ......

tensor _D_j_(r) is defined by the relation

3D,:k,(r) = ,9(r)(D_,- D,i_,), (2.3)

..... ,. i. !... ... :-: ..... :.-,.i...... -"whe_6_'(ri' =" I: _n the fil_r a_8 _9(r)"-O iti the'mairix, with. £_,._fdenoting the '.. :--.:-........, ,::: .:.....; ;..-:. ::,::" .: _..i

;: : ....: '....:., • " ..elast .n_D_, h_ t.h_,ma ..fix•- .- _.ty.tenspr.oftlle.l_ber._ ,t tof. t ..2 ..... . .....
• In thVexpressi0ft for"the average 0r effective 6onstitutive relauon m (2.2), "" "::" "'" " "..... .... ':' "-'" ......

_ the quantities At° De%_and _Do_(r) are given. The deviation strain increment

Ac_(r) can be obtained throughout the periodic cell as a function of position
r by using an explicit Euler forward difference method, since the stress and

state variables in a viscoplastic formulation will be known functions of posi-
-_ tion at position at the beginning of the increment. Everything is therefore

"- known explicitly except the total strain increment AeOn(r).

Let the Fourier series approach described in Section 3 we find that the total

strain increment is determined by solving the integral equation

l -+_

A I,(r)-- A:, - V. E E Y:
np=O

• x e {De,,Ac,,(r ) - _SD_,,(r')[A_,(r ) - Ac,,(r )]} dV(r ),
"_" _"" "': ""';"'_" " "" .°"'_'",:... " _::..,',. ...'."..." • "...,_ • " ._ _.. • ".t.. " ,. _ " . " .

...... . ...... : . .:.:.,.?......V,i.?:.:. ,:.: .,........:.,,; . :,.:...:, ...7:.7 " "?"_':"":',,"""" 7,::'" "'_ .:,":'::','7.':':." ::r "'":" .'Uz.:..'L_:'..'.." ;,';':;"._.",-. ."":,'--".'77 "'" " " _ t;, :::.
(2.4)

• . where the fourth rank tensor g_e(_) is given by . .

i = + (;)), (23)

in which the Christoffel stiffness tensor Mo(_), with inverse M_yt(_), is defined
by the relation

izt
= Mo(;) = Dpo¢_,_ ,, (2.6)
m

with _'_ = ¢o/_,f_ = ¢/_g_ing a unit vector in the direction ot'the Fourier
wave vector g, and _ = x/_=¢,, denoting the magnitude of the vector C.,In (2.4)

,, the sum is taken over integer values in which

_t = --,2_nt _ = _2rm_ _ = _,2_m_ (2.7)
- L_ L 2 ' L_
=wa

and L,, L2, L_ are the dimensions of the unit periodic cell in the xa, x_, x_

directions, so that V_ = LtLzL _. The values ofnt, fix, rt_ are given by

. np = 0, +l, +2, +3 ..... etc., for p=1,2,3; (zg)

and the prime on the triple summation signs indicates that the term with

| i nt = n2 = n_ = 0 is excluded from the sum. [_7
[_ In the Green's function approached the total strain increment Acid(r) is

_.F ?GOR QUALITY
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" . , • . .

.. '; ' dete_inedby solvlng idiffereh{ i:ntegral eqtiiti0fi; v .......... •-, ' , ": , •- :: ,.m, • . !

.... . :g. .,:: ........ ..' -" ..... •..... .... "-., ..... ..,... ......... ...... ,: ,:.._..,. / 4.,., : =: ,,..-:- , .... .-,. =. ,.-.. :-5 :.:..;...£Lc..:. _ ,.:::L. ..... .
A4(r)= A4 + ,..(r- O ,Ac,,

I,==, V

t T r t
-aD .... (r) rAs,,(r ) - Ac,,(r )} dV(r'), (2.9)

'_°": ': ': ..... : ' '" ..... " ' " "" _vli&_'the"fourtti tank: {en_i3r :U_im(r:-a #) give'n-the kl eomponetit 6f the total ..... . ..... ,2.......: -..... ....... ..:.

., ,:.. :. strain in.creme.nt _.point..r du.e t..q t.h¢ mn component of,a stress .increment • , ..
m _

• applied at pointr in _he infinite matrix'with elas'ticity"_ensor :D_,_,"i.e., " ".: .... .-.. • '::.......... -': : .-'::

_- =

-IF.a'c'-('- a=o'-('-")l,
Utl,..(r -- r') = 2 L ax_dx. + axtax. ..] (2.10)

and the volume integration in (2.9) extends over all the periodic cells in the

composite material, i.e., over the entire compsite.

The Green's function tensor is defined in Barnett (1972, 1973) and Mura

(1982) by the Fourier integral

o0

f r f d' K M-'iT'(_),,-,g-,r-,',
a,j(r-r')= jjj(-T  ) K' - ' (2,1)

"-" in which the tensor _ is now defined by the relation (_ = KdK with K =

x//K_K¢ denoting the magnitude of the vector K = (K_, K2, Ka).
;_ ::': ,"'"........." -: .......":"" ....•...." • _.':.":',_ ..)_ gteettdtte...5"ir:is ghowti_-'by, a_a'pls_;gflm:'l:*oisaon:_.fi>rro_._,.,.t___:•(_._):

_ and (2.9) are identical, although the summation extends over the integer values

nt, n2, n_ in (2.4) and extends over the periodic cells in (2.9).

" "...... " " -.-Both (2.4) and (2,9).are int_gral.¢quatiotts.for.the d..e.ter_in.a, tion. 9f the total
strain increment Ae[_(r), since this unknown quantity appears both on the

" left-hand sides of the equations and on the right-hand sides under the volume

integrations•
; The "effective" constitutive relation given in (2.2) and the total strain incre-

ment relation, given by either (2.4) or (2.9), contain the volume integration of

the deviation strain increment Ac_(r). In the periodic cell the deviation strain

_: increment at any point r will be determined from a unified viscoplastic

=_: constitutive relation (Lemaitre and Chaboche, 1985) appropriate to the con-

stituent phase in which the point r resides. If a constituent phase is included

at the fiber-matrix interface, a constitutive relation can also be proposed for

this chemically degrading phase, and the resulting inelastic strain increment

determined for inclusion in the volume integrals. This may be important for

metal matrix composites where boron, carbon, and silicon carbide react

chemically with superalloy matrices at elevated temperatures.
Equations (2.2), (2.4), and (zg) form the basic incremental constitutive

equations for determining the "effective" overall deformation behavior of a

composite material with a periodic microstructure. In order to update the

• , .... . ........ -%• "L ".'" ; . .:';:'P

t¢q
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540 Kevin P. Walker, Eric H. Jordan, and Alan D. Freed

.'.. ': ,_" ........, , :.,:..._ -. ".. Stress sta_ m .ca.ell .of the _t .ram._t.ph_ m prel_arataon .for integrating the. ._.-,, :,,?,_:-.,7 ," .:':: .,_:::-'._.....,_. :< ' .: %.._
-"effective const_tutwe relatmn over the next increment, the constitutive ..... . . . :. • . . ....

" " " =B;),ii; a  (ri ,iOj "
"":"_ '"......"' "" ...... "'isttsed;'whereD0_;(r) _i D,_., !_ . = D .or a_ofding:as the,poiatr,i_ in.the fiber, or., .,_:........... .,. ,.. :. .... .......... :., ,: >:

matrix. The stress cr_j(r)and state variables.qi(r) can now be updated at each
point r in preparation for computing Ac_,(r) in the next increment.

The derivation of the preceding equations and some methods for their

_ ,:.-..,. " ... .... :..-.:-.:._ . solution are discussed in the succee.(Jing sections of this paper.

)"_":." "/ ;'.,'"., ' '." ' . "."'.'." : "-':" " ; ....... .. . .,.-, i" .; . _,:_. ." .. .;.,.. .'. _ , ......: , ... ... ..... : .... _- .: .:
3. Fourier Series Approach

"- The application of Fourier series to the calculation of the "effective" overall

constitutive behavior of periodic composites has been dealt with in detail by
Nemat-Nasser et al. (1981, 1982, 1983). This work is used in this section to

develop constitutive relationships for viscoplastic composite materials under

small displacement conditions.

_ The periodic composite is supposedly acted upon at its surface by a spatially
linear displacement increment, Au°(r), given by

Au°(r) = x_A_ ° + x_A_o °, (3.1)

where At ° and Aca_ are the spatially uniform strain and rotation increments
,-,- at the surface of the composite.

If the matrix material was homogeneous and had no fibers embedded in it,

• •, ,,a ::.,.: the_.t,ra.in i_rement-v_Quld..b¢ bO.mog.e.n_.u_ a,_d .gi.ve_a.by. _.._ _77...;7'.:".- t..%. "..;._..:_ . .

- I/..OtA,o,)
Ae_ = ; |O[---TS'-'_ + (3.2)0x, /-

-i , :: .... - ' ..... .. :." .... ,. " .........
-- =. Since this is constant, we may trivially volume average A_ over the volume
" V of the homogeneous matrix material to obtain

IIl
"-2 Ae° = V JJJ2\ _x_ + (_x, ,} dV(r), (3.3)

v

which, by Gauss' divergence theorem, may be written as

,;;, oAe_ = V 2(n_(r)Au, (r) + n,(r)Au_(r)) aS(r), (3.4)

$

where the integral extends over the surface of the material and n_(r) denotes
the outwardly directed unit normal vector at point r on the surface. Thus, by

o . applying the displacement increment Au°(r) in (3.1)over the surface of the _/-_½

OF POOR Q_ALITY
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• material to produce the surface strain increment given in (3.4)' (3.2) and (3.3i = ....

•_ _". ..... _ " ....... :...... _ .::,........ :.,show:that thestrain increment in the matrix material is spgtial!_ un'fform.

-- If the dispiarement inci'ement _u°(r) in (3.1) is applied to the actual corn- " " ':".: :...... :

. , ....... . - .... posite material;the total displacement it_creme.nt within the materiaL..Au[(r),
will vary ina periodic manner due to the assumed geometric periodicity oi".... : ..... •

,, the composite material, so that

Au_(r) = Au°(r) + Au,(r), (3.5)

........ " ...... " 'wfi_:i:e Au is the"displa_i_ment rement:whiCh woutd be induced in .the ...... -: ...:. :. ............ .. :.,

;.-.-....".?-... )...ImW _.•

.,,.. •. :homogeneous rrratri, x ff-.,,he.fiberph_e we.re ._bsent,.an.d Au_(r) is the pertur..- .
' bation or'deviat_bn froth the hofabgeneOUS"value du6 to the pre,_nce"o_'•tla_ " "

fibers.

Corresponding to these displacement increments, the total strain increment

at any point r in the composite, Aekr_(r),is given by the relation (_

- _ A_r_) = Aeo + A_u(r), (3.6)

where

-- (O(au°)-- A:, = +£ vxl &x, and Ae,,fr) = 5\_ + _gx_ )

(3.7)

with Ae°_ representing the spatially constant total strain increment which

would be produced on the surface and in the interior of the homogeneous

matrix if the fibers were absent, and with A_u(r) representing the deviation

• .:.-.---.•:-:".." :":' ::-."•::.-':,_': •'. :::fmm.lhe._nifortr_ valne d_e.._q,_h.e•.F.r_._y_..c_.,of:_Ffi.b¢.._s,..,_ot,h,_. _.L.,s.t.ri_i_ _

increment AeTt(r) and the perturbed strain increment Ae°,(r) vary thrbi_ghout

the composite in a periodic manner•

- - " " " " ....We defit_., the vo|ume'averaged stress and strain increments as (A%.) and
"" ........ ci  i"etr& "co i• " "(Ae0), respectively. The re ui e t e" nstitdt ve 6qti'atirn fdi: _he
--" composite material is then an expression relating the volume averaged stress

and strain increments when these are equated to the respective values, Aa_

--_ and A_o applied at the surface. For a function f(r), which varies with positio n,

' the volume average is defined by the relation

_:- (f)=lffff(r)dV(r). (3.8,

v

Since the composite is assumed to be comprised of a periodic aggregate of
- _ identical unit cells, we may write

 ;ff(f) = _- f(r) dV(r), (3.9)
v,

where I,', denotes the volume of the unit periodic cell.

, -

.'•. ,, _ •°..; ...._•,. .. . ..

"y._._ "?.;;7"..• .,.: ..,,,_ . . • , ._. :._::;•

• • ; • .•. _ • .

ORIGINKL k'_:_E i_X
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542 Kevin P. Walker, Eric H. Jordan, and Alan D. Freed

Z. ::. !_-.'_-.:i. :.;. : :__.(;::,_ _.'./If we volume average the total.strain increment.in (3.6), we obtain ... ..'- . ..: ....... . ..- . , .... .. (

_ " " " " "'+" .... " ''""' " " ," _ " V. "" " " "_-'" :, ." Vd "" " "" " "".":": '" •.... ." ." "''+'::-" '; ...... "'+" " '_:" :""_'" "_"

............ or
: °`+ "

= =

w But the volume averaged total strain increment is equated with the value
applied at the surface, so that (Aekrl) = Ar°t and

_.,_'" ,-' • '.:-,,, . . • . :.. ... "i..... ."_.L? ',., .." ._ '" "J_' " I

• " " " " v_ri "2_": " " : " :" . .'" . "'."_vfi_dh"sfio_V_:ttiafti_e ._Yum'd'ave'rage Of tile urbatio'n'strain .in&emeht, ., ...... .. ::. ;-.. -..... ...,:..

A_(r), is equal to zero.

If the elasticity tensor is denoted by D0_(r) and the inelastic strain tensor
by _(r), then the constitutive equation at any point r in the composite material
can be written as

w

_ %(r) = D_k,(r)(ekx_(r)- e_(r)- _tu(r)(T- To) ), (3.13)

where

: _u(r)(T- To)= _(r, T)dT, (3.14)
O

is the thermal strain and :t_t(r), u_'t(r) are the average and instantaneous

coefficients of thermal expansion.
The incremental form of Hocke's law is

• _ ; . . Aa,j(r) = D,su(r)(Ae_r,(r) -- ._.f_t(r)), . . (3.15)
'; 7_ :" "" ".... . ' " "" "" ................. : _-' ,.'..--"- ",: ,." :','" " :,'!Z;" ' ",'.'. ".'" "._ : -...c ..G"".:.._r,,,...:_.....: •

where Ac_(r) denotes the incremen[al sirafn repfesentihg'tlie cle_i_ttioti ffiSm ..... "'""'_'. _'':" :'"" -"::"" ":'""_":::

isothermal elastic conditions and is given by

...... ".......... " .... A%(r).=.A_r(r)-+ _t_'l(r),_.T .-.Di_(r.)A/_,_,:(r)(t:r_(r).--'._,(r) ..-r.=_,(r)(T.,.-.To),),. .,., -
(3.16)

in which the tensor AD0u(r ) represents the incremental change in the elasticity
_" tensor due to the temperature increment AT.

[q In a unified viscoplastic constitutive formulation (Lemaitre and Chaboche,
1985) which is integrated by an explicit Euler forward difference method, the

=_ inelastic strain increment A_(r) is a function of the current stress (at the

_- _ beginning of the increment), at(r), and the current values of the state variables,
q_(r). For example, if

. _ = fo(o,,, q,), (3.17) i

then Ae_ = f_i(tr,,, q,)At, and the inelastic strain increment is independent of

the total strain increment Acorn(r). This independence of the inelastic strain•

increment on the total strain increment is no longer true if an implicit integra-
_- tion method (e.g., backward difference) or subincrementation method is used.

OF POOR QUALITY
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" - ,.:.. ::i, ; ; Equivaie_n.ceg.fGreen!sFun..ctigoand the=F.b_ri'erSerieslRepr/.e_ea_fign. $_.3 .:,: .: _ ,:/ -::. /i.: ; . .... /;s ;..

The elasticity tensor D_t(r) may be written as

where

- ' " _Dii_iiri 8"(r)(D,_u " '_ " " "" "= - D,_,), (3.19) .....

/-- with 8(r) = I in the fiber and 8(r) = 0 in the matrix, the superscripts f and m
referring to the elasticity tensor of the fiber and matrix, respectively. The

_"_ -.....: .- - ..... '. ...... , .. constitutiveequation at any point r.can.then .be wri,t_en,from (3.I.5),as " : -. ..... • :..... :.. --. ,.-.......-.

". ", ..'-: ......... "..." Au,i(r) .,=_D_, + 6Do_(.r_))(A_°, + Ae_(r) .-.. _Ch.(r.)),. • (3,20)......:., .... : ,: .. :. .... ...:
• , .., ".' - - . -. • . . • . . ..."" . .... . ... .

f

or

_ k

Aao(r) = _ oDiTu(Ae_+ g_(r))

-{D_'_tAc_t(r)) - 6Dou(r)[Ae ° + Aeu(r) - Acu(r)] }. (3.21)

mIf the quantity in braces is set equal to D_TuAtu(r), that is, if

rrl _ rtl
DiTuAe_/(r)= DiTuAcu(r) - 6Dou(r)[Ae°_ + Aeu(r) - Acu(r)], (3.22)

then (3.21) can be written in the form

A%(r) = Di_(Ae_r,(r) Ae_',(r)) m o-- = Di_t(ne_t + Aeu(r) -- Ae_(r)). (3.23)

From the preceding equation it is evident that the eigenstrain increment,
Ae_'_(r),represents the incremental deviation from isothermal elastic behavior

-"-- in the composite material when the elasticity tensor is taken to be a spatially
• constants tensor appropriate to that of the matrix phase. .

....' _"' ....','. -:'.-.:- : ?.;' "; ",.:" ' ".:',.:N_wtrh_ lax¢ for _eorrtinuirig,:_tafi_:'.¢tleilibdm;a"' _hrdugh_til:.the,.straix_,in-..:._..:_ ,.... ........... .: ,...".,............,_..... _ .::
,,,, crement requires that

_(g_,_(r))
•" ": "" " : " " .: "" .:cTxj • =0, (3.24)

Equations (3.23) and (3.24) then require that

m 0

=_. d{D_u(Ae u + Aeu(r) - A_'_(r))} = 0, (3.25)

or, if Ae°_is constant,

e(a_'_(r))
D_ d(Aekz(r)) = D_t (3.26)

'_' ax_ ax_

Due to the geometrix periodicity of the composite we may expand Au,(r)
and A_'_(r) in a Fourier series (Mura, 1982, Appendix 3). This gives

+_o _+_ +_

_u_(r) = _ _ y" Aa_(n_,n_,n_)
nl=O n2_O n21aaO

x exPl._._x _ + _ (3.27) ,, ,..+-c:x.)j. [

r-

ORIGINAL Pl_,,q_2_S
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. " . .where L_, L2, L3 are the dtmenstons.of a umt cell !n the x_, x_, xa d_rechons. •. ,

.-_-,-............,.; ............. .-. .... Th.e eoe.m.cj..entsAak i._ the .Fourier expansion are determined by multiplying
:--" : ' :". "....... "/ "i?f' .....,2rim.. ':'_ _wm',"."._":,_ri_i_'=",3 _ -- .:.'.-.y.'.":. ",- ..........

each side of (3.27) by exp -i _xt + " "x2 + _x_ and inte-l )J• . Lt L2 L3 i

: grating over the volume of the unit cell to give - ........ ,. ..

- LLLAal,(nl, n2, n3 ) 1 L, r._ L,= _ Auk(r)
LtLIL_ ,-o a=o _=o

Z--; .... ,...... '. .... .. .... . ................ " [' [2lint "2nn2" +.2rm'x3"Xldxld'x2dx""--'_ JI ........... " ' "
. _ . .; .... . ........ ' . x expl--il_x t + _x2""-" "."..."; ".'."':" .' ["'k; ,.:....

w

where only the terms with m_ = n_survive in the summations.
Equations (3.27) and (3.28) can be written in shortened form as

Aug(r) = y' _ _' Aak(_)e '_'', (3.29)
homo

with coefficients Afi(_) determined by the inverse relation

';f;A_k(g) = _'¢ Au_(r)e-ig'" dV(r), (3.30)
v.

w

where

= (_t, ¢2, _:3), r = (xt, x2, x_), V¢ = LtLzL3, (3.31)
with

2nn_
_i _ _ (no sum on i) for i = 2•"--""'". ': "_:¢_"":""',"_""" ..... '"...... " ..... ""; "";,..::c-_..,_:t..'-:,,_:'..'. • -:. _.-.. :,....... ...,,, , I, 2, 3. . (3.3",') .

--- " . ........ •......... ...... :" .... :';,":?" :: "'¢" :" ; ',7.r:_"." . .'" :i.'"-. "_.',,'. ? .:':'..'" ":"_'.',.': ....... .'.. ,.,. ;....; .'_.

The strain increment Ae_t(r) can also be expanded in a Fourier series to give
• ±m

......... : ......... " •: .. ' a,:,(r).= E- E' . :.....

= _

r

m

w

2

w

with coefficients A_ determined by:the inverse relation

'ff;A_'_(g) = _ A_t(r)e -'g'* aV(r). (3..34)
v,

In (3.29) and (3.33) the prime indicates that the term with nx = n2 = n_ = 0 is
excluded from the summations, since A_ (n, = 0, n2 = 0, n_ = 0) represents
a rigid body displacement increment and A_*_(n_ = 0, n2 = 0, n_ = 0) repre-
sents a spatially uniform strain increment.

By substituting (3.29) into (3.7); (3.7) into the left-hand side of (3.26); and
(3.34) into the right-hand side of (3.26), the equilibrium relationship becomes

+00

D,TuX _ E' ½(Adt(g)_,_$ + Aa,Cg)#,¢$)e '_"
n_=O

= --iDo ink! E E E' A_I(_)¢J e'_',) (3.35"_ LL _-'"

(3.33).. : ...... . ,.. .... ?.
.°
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-- • -/. ::'. '- "'_'_"_"" " -'- '-'-:'_.,. :',":.:-'-'" "" '."'_.".::i.. :7,. '.-.._-_: :.%_:- : " "" • ;.. '-. _ '..-... "" ..':.. ':-_ ". ? ,' • i., . ': :-. S.- "_-,.. . -. " . "::- , .: •
_." ":-'. "" t'"_" ,._.2':"-'e" ?-...'"",.. :':_," .,.'_...., .-':'"..% ::_.: ":9,..,"._ :.:,.',...,-.,,'.:!_:..:._...-_.:_, .) _..._ *: "" ".;_ _- Y .'..,.;"e :_,- _ ";'" ; ;''. "- ti; _ "_ _":-"" _ "''J, :" " "_" - .i"

" " • ..... m' " • • m .... -*: ...... " " ......... -.... i "' '' ' ":"
Dou_,_:Aa_(_) = - ,D._,_ia_,(_). (3.36)

..... "............... :....... "...... If _=_ denote_"the magnitude of the-veetor _,, _ i• a unit.vector .inthe ....... -. .... :- • i-:..- ........ - ..... "
• . . . . ,

"- direction of _ can be written as _t _ _/_- Equation (3.36) can therefore be :
written in the.form

w _ D,m _,_] _--(,/Aak({) = --,Du_,_Aek,({), (3.37)
or

• * m _ "......... _2(D_£,_,_)Aa,(_) =-_Do,,_jA_u(_). .. . (3.38) ........ - .. .

_- "".'.:".,U" "'" . . .... " .The seco.nd frank te'naor,..... -,." . 7 - ..... . .... .. ".. ,... :.._ '-"." .. ;....-,.....i : .. .... """."" " ." :'4: "

" M,k(_) = Mk,(_) = D_t_t_j, (3.39)

i,., is called the Christoffel stiffness tensor and (3.38) can be written as

_. _2Mi,,(¢)&ak(_) " _ *= -- _D_,,_jA_,(_). (3.40)

This equation can be inverted by premultiplying each side by the inverse
tensor ¢-2M-t to give the Fourier expansion coefficients

Aa_(_) • -t ,, . -2= -_Ma, [;)Dq,@sA_,,(_)_ • (3.41)

The expansion coefficients can now be substituted into the Fourier expansion

of Au_(r) in (3.29) to give

Au,(r) -X E Z ''-2 -i m , i_.,= t_ Ma (¢)D0,,_Ag,,(_)e • (3.42)

X..&i_s..e_.It .may _ow...b.¢:.sttbstR,ut._d.it_.l;o:[._,7.),s.o ,that t.heL_...r..t.urba.t.ion,strain .:.. ,. ......... .
• ' ................ '...... ' ........ "_'""'.'_ .... : ""'. ":"': " ": :'-" ':'" '_-'_',*'-:"'"'"-" "'_-,;'.:.'-_,.:',;.':.'..':..._-';::." _: ..;:.::'3increment may be written as "

(3.43)

If we define the fourth rank tensor g_q(_) by the relation

then the perturbation strain increment can be written in the form

_.+0o

Ae,,(r) = _ _ _' g,,oC;)O'_oAe*(_)e '_'r, (3.45)
n_:O

and by inserting the relation for the Fourier expansion coefficients A/P from
(3.34), we obtain

, ,. fffAe,,Cr) = _, E E E' 9,,,_(;) D¢,,Ae*_Cr')e'_"-" dVCr'}, (3.46)
_=0

F,

where the integration extends over the volume, V_= LtL2L_, of the unit
periodic cell.

.. , . ". .

i
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546 Kevin P. Walker, Eric H. Jordan, and Alan D. Freed

The incremental constitutive relation at any point r is given in (3.23), and

this relation can be used to update the stress state at any point r in the unit
, T

,. ¢.ell 9ntc¢ (3.49J is..solve4 f,or A.q_(r).. Atternatiyely, (3,48) can be solv.ed for A_(r)
_':" "+ ":: =:"" "-:: ' ."2" ,: a'_d'i_ns_'ed.'infb "0_:_2)'afi_l (3:t_)'. _h_ 8ver_|t:%'ff_'¢fi4e_':_i-i_tittatli, Ei'et_tlrn • ":':::" :_:.:. :'. L...:.:-:::.;_:...:..,, .... :..' ,. ' ....

for the composite material can be obtained by averaging (3.23) over the unit

periodic cell. This gives
== - .. . . . ..., ' . . . _ :. .' . '

<_a0> . o &f,)>' i3.5b)

or

If we define _¢_ = (&to) as the volume averaged stress increment, A--_'_
(Ae_':) as the volume averaged eigenstrain increment, and note from (3.12)

that the volume averaged perturbation strain increment is zero, i.e. (Aet_) = 0,

then the overall "effective" constitutive relationship is

V_ or, from (3.22),

Ao.O m 0 m _*= DO_A_ u -- DouAeu, (3.52)

le,

6Oou(r ) [A_(r) - Ac_(r)] } d V(r). •

(3.53)

ORIGiNaL P&Q_ l_
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.- :-_i:i:;:. _.:._? -.._ i.: .-..; _ ..:._ . . r''.. .. : - "..... -. ' ' " '

.... '..... :- ..... .._"_ ,.-..- ._: Tile proceaftre ror.mt_gCatmg _h¢'_v.etfl_ff_e:,:_t_._v.e ir¢!a.t_.n.?:; _.:%;]_':.--_E?::i:i":..'-_:?,_i:;,_.]"=,

then proceeds as follows: " -.. " . " " " [ ..... /: '

..... :: ....... "" ...... "_........ "....... " _(i) Fi_friia _ho_ledge.ff ihe:stress state _hroughout :the unit periodic:ceil.at-....:.- !_..,..::..-_.:...... ..-..,. : ....

• the current time, t, calculate the inelastic strain increment Az[l(a,,, q,, r) - I ' "
from an appropriate unified viscoplastic constitutive relation. The visco-

plastic constitutive relation will vary according as r is in the fiber or"

w,_ matrix phase, respectively.

(2) Compute the eigenstrain Ae*(r) throughout the unit periodic cell from

-- either the implicit integral 0.49) or from (3.48) and (3.22).

_ • • (3) Compute the stress increment throughout the unit periodic cell from (3.23)
m

•. : -, . .t .

"- " "'..'"." '. •.-". .. """and trpdatethe.stfess,.Strain;'.and vjscopl_, tic:state.variable.s according to
the relations

E_I %(r, t + At) = %(r, t) + A%(r),

t_(r, t + At) = t_tr, t) + A_(r),
L .

q,(r, t + At) = q,(r, t) + Aqi(r).

" (4) Calculate the overall "effective" stress and strain increment for the corn- t "

posite from (3.53) and update the overall "effective" stress and strain from I

the relations 1
- ,_°(r,t + a0 = ,_,°(r,t) + A,r,#),

_°(r, t + t.) = _o(_,r) + Ag(r).

-- (5) "Repeat the preceding calculations for each incremental load step. [

I• The preceding algorithm makes use of the fact that the inelastic strain

• ": ": ................. - • _'_.itmremcnt..-.A_[_(r).:is::inde.p¢ .t_l.e.at:.of.th._ ..total,,str.ai.n, i.nqr.e,..m_r_t..,A.e_(rLff,an .......,...1, .,..
explicit Euler forward d_fference metfiod is"used to ii'ite_rate ff/e:'uiiified ..... '" """': "':' ":: "':.....

viscoplastic relations for the fiber and matrix phases. If an implicit method--

_ . such as.backward difference ot7 subincremeutation--is used, the inelastic
=__ strain increment depends on the total strain ificrement. In this case the total

strain increment must be obtained by iterating (3.48) in the form

Aelt(r) = &co + V, "" ,_'_o _' guO(_) e'_'_r-r'){O_,,Ac,,( r', A_X_(r'))
v,

- _SD0,,(r')[a,,_,(r') - Ac,,(r', Ae_(r'))] }dV(r'). (3.54)
-- 7

The first iterative guess can be taken as A,_r_(r)= A,°, and the right-hand side

evaluated to give ran improved guess for Aeu(r). This process is then continued
- _ with

= a,°,+ V,E E E'g,,,A) " '

-diDo,,(r') ['{As,'r,(r')};t - Ac,,(r', {A_(r')}_t)]} dV(r'), (3.55)

until the 2th and (2 + 1)th iterates of Ate(r) converge. ),,Z
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..... -... " _ .- . ..... -:... ... • .- . . . _ .- • =. . . " i _i ::..':

"":'._ :-:-' " _ .: " "_ _:. .,":" "Equation (3Ag) 1s not so convement for tteratmn as (3.48) when the melasttc • .- . • _......... • ...... :- ......
strain increment depends on the total strain increment. It is always necessary

:_- :_.-_....... .:::-'.......... : .... --:::to.know .the total strain.increment-Ae[t00"in, order.-to calculate .the _inelasti¢- _ :":-'- ..... ::t:":: .............. :: ."." " "

strain increment A_,(r', A_r_(r)). But (3.22), viz.,

= * = DijuAcu(r, Ae_(r)) -OijuAeu(r) = r 3D_u(r)EAer,(r) - Acu(r, Aerm(r))] (3.56)

is an implicit equation for Ae_l(r) when the iterated quantity, Ae_l(r), is given.

" Equation (3.48) is therefore the appropriate equation to iterate when the

inelastic strain increment depends on the total strain increment. For further

details, see Walker er al., (.1989). .. :
, , .- . • • , . ,

,_'.'s • " /- . ..." ' .... .:'" "' ;._ : .. '" : "" .. ".7. "'' " "." :" • ..... " """ "
.... . - . , -.

-- =

Imw

=-

4. Green's Function Approach

The equation of continuing static equilibrium for the composite material

throughout an applied strain increment is given by

c_(Aa_s(r))
¢- Aft(r) = O, (4.1)

where Aft(r) is the incremental body force per unit volume of the composite

material. From (3.23) and (4.1) we obtain

c(Aert(r))

D,iu _ - c3x (D_s_tAek*_(r))- Af.(r). (4.2)

From this e.quation it is clear that the divergence of the stress variation
• '....- ._...._ ;. _. -...:. _..'..'.'.•.v,..'::':. ::., . ":'prod:aced'by"At_(r) may b_-f0rmally rag/tr_ekt '_:A':fie_iiib_us:_iSdy".f6rr_ ;;";""::: "..... ""

increment, analogous to Aft(r), which is applied to the homogeneous matrix

material with elastic!ty tensor De__.The theory of elasticity for homogeneous
" materials is generally concerned.with the solution of the homogeneous differ-

ential equation (4.2)--Navier's equation--when the right-hand side is zero.
When body forces are present, the standard method of solution is to obtain

-the displacement solution at r due to a unit body force applied at r'. This

solution is given by the Green's function Gi_(r - r') whii:h gives the displace-
ment in the ith direction at r due to a unit point force applied in the jth

direction at r'. For a distributed incremental body force Af_(r') the displace-

ment increment at r is obtained by summing the results for the distribution
in the form

v

The integration extends over the whole volume, V, of the composite material

which may be regarded as being of infinite extent.

When Af_(r') = 0 we know that the displacement solution is Aug(r) = Au°(r),

corresponding to an applied uniform strain increment Ae ° on the infinite

ORIGINR.L P_,z_ CS
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_ , Equivalence of Green's Function and the Fourier Series Representation 549

boundary of the homogeneous matnx, l_or an ¢ffe_'v¢ dtstlab_uted.body force. L_ -:..,-, :. _.._: ;..::....;,;,..., ..,.._,:, v,:
increment, given by the right-hand side of(4_2), witli _jj(r') = 0, the solution " :' " .... ' -" :. " .... /' ;

' ' " i":" 'for the'total displacement increment Au_(r)_n be .written as

V

This corresponds to (3.5), the volume integral representing the perturbed
displacement increment Aug(r) in (3.34) and (3.42). • i

For a material which is homogeneous with elasticity tensor D_u the Green's !

•.. : functiog satisfies the differential relation (Mura, 1982, p. 10)

= _92Gk,,(r--r') ' : " '":: "_ :.

D'ik' _x_d_ + 3,m_(r -- r') = 0, (4.5)

where 6_,. is the Kronecker delta tensor given by _, = 1 if i = rn and 8_= = 0
if i # m, and _(r - r') is the three-dimensional Diract delta function defined

by the relation

di(r - r') = _(x 1 - xl)_(x 2 - x'2)_(x 3 - x'a). (4.6)

By applying Fourier integral transform techniques the Green's tensor is shown

(Barnett, 1971, 1972) to have the Fourier integral form

G"(r-r')=fff d K(2n)_ M'Yt(()e-'t't'""'K: (4.7)

in which the inverse Christoffel stiffness tensor M,7 _ {{) is defined by

-l" _ m -1 . '............ • .. " "

with (_, = K_/_ = K/K being a unit vector in the direction of the

Fourier wave vector K, and K = x/_K,, denoting the magnitude of the wave
vector K.

Making use of the relation
|

G,_(r-r')d-_(D_,,,A_*_,(r')) O-_;(Gt_(r ' = . ,= - r )Oi_,,,Ae_(r )1

OG_(r r"
- ) O_.,.Ae*_.(r'), (4.9)

Ox;

we may write (4.4) in the form i

!
t m _ *Aur(r) = Au°(r) - (G_(r - r )Du,,,Ae,.,(r )) dV(r')

V

+ jjj Tx[ ) D_,,,,Ae_(r') dV(r'). (4.101
V

ORIGINAL PAOE IS
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..... .- ,-.. _. .......... The first volume integral.can be transformedintoa surface integral via Gauss_ ...... --..:.-, ..-,-.:................ : .... :.

_ divergence theorem, viz.,

• .- !-".." ...;: _-_ "-.......: ,.,..-.,-.

r :

L_

_q

ff; ,..(Gik(r -- r )D,t...A_(r ) dV(r')

v

• $ - - .. _ •• ;." .. .- . , . • .

The surface integral extends over the entire outer surface of the "infinite"

matrix material. Since this is assumed to be at an infinite distance, all the

integration points r' in the surface integral are at an infinite distance from the

field point r and Ga(r - r') = 0. Thus, for an infinite body the first volume

integral in (4.10) vanishes. This would not be the case for a finite body in which

the field point r is close to the surface integration point r', and the volume (or
surface) integral would need to be retained for these situations. In this case

other surface integrals would arise (Korringa, 1973; Walker et al., (1989) due

to the application of boundary incremental displacements or surface tractions
on the surface of the material.

From the properties of the Green's function,

dai_(r - r') OGa(r - r')
= (4.12)

dx; ax_ '
• "'" " "" " ....... '",'''" " .... ."" ::'"" "_"','- ." • '..".::: .',(:';:." ".":, ,' ":.'2"..: "" ":'." .': "_.:, "-',".':.

r - r' = (xl - x_, x2 - x[, x_ - x[). (4.13)

Equation (4.10) may then be written alternatively as

JJJ ax,
iz

D_...A_=_(r ) dV(r'). (4.14)

But Ae._(r) = ½(O(AuV_(r))/Ox_+ d(Au](r))/ax3, so that by differentiating (4.14)

with respect to x_ and x; and taking half the sum, we obtain

Ag(r)= A*°+ f f f uo ,(r- aV(e),
v

(4.15)

which, by means of (3.22), may be written as

A*_(r) = A*O + f l f Ueu(r -- r') {D_..Ac..(r')
V

(4.16)

ORIGIN.AL F_._ PS
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Equivalence of Green's Function and the Fourier Series Representation 551

• . - " . ? i _ ". • . . . - ........ ' " " ,...'.." . " , : i: "? "-'.._::' '"

'".:k...-. -t.L.'i!:,:.-.,:'":, Xnequiff_deiat!ititegra_ eqtl-ation;.invbi_hg t'he dgefistrfiiii i.nc_i_ietff:-A*_(r_.--? ':°; 7:-::;:::.[i ::;/:. .." ..:i-.:;.i..:,:,:..

can also be obtained by using (3.22) to eliminate Ae_(r) from (4.15), which gives

7tSDou(r)[Aeou - Acii(r) ] ." D_lAefi(r) D_ZAc (r)"- ..... ".............. :'" " .......... :.......... "..... "..... " :" Itl

-rD,,t(r)fffu,,_(r--r',D=,,A_,*(r')dV(r'). (4.17)
v

In the preceding equations the operator

t (a'e (r - e) a%,(r = (4.18)

gives the ij component of the strain increment at point r due to an applied

stress increment component kl at point r' in an infinite homogeneous medium

with elasticity tensor D_, and Green's function given by (4.7).

From (3.6), (3.46), and (4.15) we see that the perturbed strain increment,

A_kt(r) = Ate(r) -- a,°_, is given by the equivalent relations

= D.... A_,,(r )e dV(r'),
np_0

v,

(4.19)

=

-- i

L_

or

;ff . .A_k¢(r) = Uu=,(r - r )D .... Au,,(r ) dV(r'). (4.20)

V

. :' "'" The"_,_;lu'm_: ihtegrat "iti the'Fbttr:iet series .reiSresehtati0n ekt_tiffs"ov¢f:tfie' : .... _: - ..:: ).- . 5- :

volume, V,, of the unit periodic cell and the summation extends over the
I

integers np = 0, 4- 1, + 2 ..... etc., where p = 1, 2, 3. In the Green's function I
approach the volume integral extends over the entire infinite medium, i.e., over I

all the periodic cells comprising the material. It is shown in Section 5 that the
Fourier summation expression in (4.17) can be converted into the Green's

function expression by means of the Poisson sum formula.
From (3.22) it is evident that if the elastic properties .of the fiber are the same

as that of the matrix, then/iD_kl(r) = 3(r)(De, t -- Do=kl)= 0, in which case

A,_(r) = Ac_l(r) (4.21)

is known explicitly without having to solve the integral equation. From (3.48)

and (4.16) it can also be observed that Aekr,(r) is known explicitly when

tSD0u(r) = 0. The explicit relation in (4.21) holds only when an explicit Euler
forward difference method is used to integrate the viscoplastie constitutive

relations. For implicit integration methods in which the inelastic strain in-

crement AekPt(r) depends on the total strain increment Ae_(r), (3.48) and (4.16)

show that even when 6D_m(r) = 0, the equation to determine Ae_(r) is still an
implicit integral equation.
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•- '_"_'.":_-:!:"_:'_::::"":'::'i_""::'"!:":_i":!:::i__-:::._:_":::/:":'?:_i"v':":'_:_:':":i_(::"i-:_:,:i:":""_:"::_/"":'ii:' '::"::('"_""(
• " 5. RelationshipBetween FourierSeriesand Green'sFunction Approaches

_ "......'........"......= ...."_fithe'compositeinate_"the'totalstt;ain_n_remet_tA_,Tt(t-)ispei:i6diCinriiiid.... - "

" is defined by the relationship

- zXd(r) = Ae°_ + Aek_(r), (5.1)

where A, ° is the strain increment applied to the composite's boundary and is

equal to the volume average of A,ru(r) over the unit periodic cell, and A,kt(r)

is the deviation or perturbation from the average value due to the presence
of the fibers.

='- From (4.19) and (4.20) the perturbed strain increment is given in the Fourier

series and Green's function approaches by the equivalent relations

= Z _' Okui(;) D._,_,*,(r')e '_'t'-'') dV(r'), (5.2)
n_=O

or v,

;f; ,..,Aett(r) = Uklo(r -- r )D0,,Ae,,(r ) dV(r ). (5.3)

V

We now show that these equations are equivalent and that the Green's func-
tion relation is the Poisson sum transformation of the Fourier series relation.

From the definition of gk_,_(_) in (3.44) we may write

#k,,i(;) = {(M_,t(;)(!(, + Mff, t (;)(j(k), (5.4)

or

#,,q((1, C2, (3) = ½(M_l((tr (2, (3)(_(, + M_,l((t, _2, (3)(j(,), (5.5)

' . . . . .. ..• " :'.".... .where. .:. • : .i...-...." .. • .- ..... " ." " .:. . ..... .......... . ..... ....::. .-

2nni

= -_ = /(21rn,'_" (2rm,'_ _ (2rm,'_ 2 (no sum on 0

_\Li: +\L,] +\L_]

for i = 1, 2, 3. (5.6)

We may therefore write

gkt(t(;) = gkuj(_t(nt, n2, n_), _2(nt, n2, ns)_(nt, n2, n_)) = f_u_(n_, n2, n_),
(5.7)

and the perturbation strain increment can then be written in the form

Azu(r) = L_L2L_ .,=o ._-o .,-o ddd
v.

( V2rm t , 2nn_

×oxol,LTcx,-

_ _-_. . .-.,. ' "

2_n 3 -]) , ,

+ -ZT(x_ - x;)jj. ,txi dx_ dx_,
(5.8)
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or as

1 ku(nt, n2, n3) , (5.9)
:" Aekl(r) = Ll L2 L3., _o ._-o • =

L=

m

m

w

Z£

where

fff- ,,htt(nz, n2, n3) = _:q(nl, n2, n3) D/_,,Ae,,(r )

v,

f ['2nnt 2nn2 x

2 .3 ]}+ -E_-3(x3- x'_) dx'_ dx; dx'3.
(5.10)

By the Poisson sum formula (Morse and Feshback, 1958) we may write

Z Z E' hkt(n_'n2' n,)
nt=O n2_O n]=O

Z g Z (2n)3 d3Ke""r'L'÷"_r'L'+"r'L')
ml=O m2=O m._=O

--OD

• ' 2rt ' 2n ;/ (5.11)

where the sum over the integers n t, n2, n 3 is replaced by the sum over the

integers m_,m 2, m._ in the Fourier integrals, the sum over m_ including the case

where m 1 _ m 2 = m 3 = 0.

We now have the alternative sum

1 ±_ ±_ -+_
= _ Z Z Z' hu(nt, n2, n3)

Aeu(r) L1L2L3 ,,=o ,2-o ,,-o

co

= Z Z E e"m'_'t'+mr_t_+_"r'LO.,-o .:o .,-o JJJ(2, ) 
_00

' 2re' 2n ,]

(5.12)

1
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zX,,,(r)= - _ frf a3K
.,=o.1-o.,-oJJJ (2,o3

xfk.s{KILx K2Lz KsL3___._e(|_x+_x'j'_x_II I 1 2 21

' 2rr ' 2n ,I

X ijrsAF.rs r

v_

x e-'xx'(x;-''c,)+x_(x'2-'2t'_+x,(xi-',t')l dx; dx'2 dx'_. (5.13)

Due to the geometric periodicity of the unit cell we may write

, , , • -- m2L2, ' __ maLa),At;*,(r') = A¢*(x_, x2, x_) = A_,(x z - ratLt, x 2 x_

(5.14)

and

dx' t dx'z dx'3 = d(x_ - mlLt)d(x" z - ra2L2)d(x'a - m3L3) , (5.15)

so that by making the change of variable

s t _, n n

(x't -mtLl,x2-m2Lz, x3 --ra_La)=(xl, x2, x'_)=r , (5.16)

the perturbation strain increment is

oo

( ( f"d_K /'KtLl K2L2 KsL3"_ i_x._ +x :, +x ,: _

= " Z, ' _ .)e ,, ,_ ,,

×2EZ ° ""-'_"
-,=0 ,,,,=0 m,=O DijrsAgrs(r )e dV(r"), (5.17)

V_(ml,m2,m))

where the volume integration extends over the volume V_(mt, m2, m_) of the

unit cell whose center is at the point (m_L_, ra2Lz, reaL3). Since mr, m2, m s
range over all integer values, the summation of tthe volume integrals extends

to all the ceils in the periodic lattice, i.e., it extends over the entire volume, V,

of the composite medium. The expression for Aeon(r) thus takes the forrr/

ao

C g rd3K /KzL, K2L_ K2L3._e,K. ,

f;; -m , - -iK.r"
x Dis, lke7,(r )e dV(r"). (5.18)

it

By interchanging the order of the volume and wave vector integrals and

noting that r" can be replaced by r' since it is a dummy integration variable,
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we obtain

fff rrr,,',,A_,(o= dr(c) jjj(2,o,
V --_13

x f_,,(K_Lt, K2L22n, K_--L')ei"('-r'D_,Ae,*.(r'). (5.19)

Introducing (K1L1/2_, K2Lz/2n, K_L3/2_ ) in place of (n 1, n2, n3) in the

expression for

L.M,, n:, n3) = gk_q(¢_(n,,n2, n3),G(h,, n2, n3),G(nl, n2, n3)), (5.20)

then gives

gk,q _ ' 2re 2re ,] (2\ 2rt ' 2r_ ' 2_ ]

('3k _-_ , 2n ' =_k,_KjK,+ KIK, , (5.21)

with

¢_ Ki Ki (5.22)
= _-=- K,/g-<:,'

and the perturbed strain increment takes the form

e_K't'-")t) m A_*trq (5.23)X _ __i.irs_rs__ ¢.

But, from(4.7),

Equivalence of Green's Function and the Fourier Series Representation 555
.... . "" , • -- -., '- . .-. ,- " ," . .'." ,'. c . .

r r rc,,,,(r- r') = JJJ(2,_)'
_C(:l

f _"r dJK M_12(_)ea:.,,_r) '= JJJ(_? (5.24)

since Gik(r - r') = Gi_(r' - r), and therefore

M..-'
Ox_Ox, = jJJ(2,0' Y_ (_)KjK'e'it'('-v)" (5.25)

Inserting the last relation into the expression for Aeon(r) then shows that

, I O2Ga(r- + _x_O_ ) D°'Ae'(r')" (5.26)
¥



Hi

m

U

[]

U

[]

i

i

m

i

m

i

i

i

i

m

mm

m

m

_u

[]

[]



r

!

!

V

g

u

" 556 " Kevin PiWalker, Eric H. Jordan, and Alan D. Freed

From the definition of the tensor Uk_,,_(r - r') in (4.18), we see that

f;; ..Ae_t(r) = Ukto(r -- r )Dli,$Ae,,(r ) dV(r'), (5.27)

V

which is the result obtained with the Green's function approach.

The Fourier series expression for the perturbation strain increment is.thus

identical to the Greeen's function expression and the two are linked via the
Poisson sum formula.

6. Concluding Remarks

The Fourier series and Green's function representations have been shown to

be equivalent approaches by means of the Poisson sum formula. This method

is well known in mathematical physics and is used extensively to turn slowly

convergent Fourier series into a series of rapidly converging Fourier integrals.

Both representations offer promising approaches to modeling the viscoplastic
behavior of metal matrix composites at elevated temperatures. Having shown

their equivalence we are free to choose between them based on mathematical

and/or numerical convenience. Each is expected to be suited to different

situations with respect to convergence of the. series with increasing fiber
volume fraction. Future work will explore the relative advantages of each

formulation and the overall usefulness of these approaches in modeling the

nonlinear viscoplastic deformation behavior of metal matrix composites. '
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Abstract--Local elastic fields in the unit cell of a periodic composite are examined numerically

with an integral equation approach. Techniques of Fourier series and Green's functions are used

to construct the integral equations. Numerical solutions are obtained using the Fourier series

approach with rectangular subvolume elements. Specific results are given for a tungsten/copper

metal matrix composite.
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1. INTRODUCTION

The combustion chamber in the three main engines of the space shuttle has a liner material

which is fabricated from a copper alloy. Temperature gradients are generated within this

liner material during the space shuttle's launch which are large enough to cause sub-

stantial amounts of thermally-induced deformation. A tungsten fiber/copper matrix

(W/Cu) composite is bein!g considered as a substitute to increase the strength and improve
the durability of the combustion liner, and may be characterized as a ductile/ductile-type

composite material.
Prediction of the durability of continuous-fiber-reinforced metal matrix composites

requires an understanding of the dominant failure mechanisms in such materials. A

requisite precursor to this understanding is the ability to predict the overall structural

response of the combustion liner in a finite element code. Since the tungsten wires have
diameters of about 0.2 mm, it is clear that a finite element mesh sufficiently fine to
delineate the deformation behavior in and around the fibers on a local level is prohibitive.

A structural analysis under thermomechanical loading conditions is feasible if the

composite can be replaced with an equivalent homogeneous material which has the same
overall stress-strain (constitutive) response. Armed with the homogenized constitutive

relation, the structural analysis can be used to locate those points in the component--the

damage-critical points--which experience the largest stress-strain excursions throughout

the applied loading history. The strain and temperature histories at the damage-critical
locations can then be used as boundary conditions on a small volume element to deter-

mine the local stress, strain and temperature field histories in and around the fibers. These

fields can then be used to estimate the durability of the component. In this paper we

develop incremental constitutive relationships suitable for the nonlinear viscoplastic

solution of the local stress-strain behavior. These are then specialized in numerical prob-

lems to obtain the local elastic response in a fibrous W/Cu composite.

2. LOCAL AND HOMOGENIZED RESPONSE

In order to perform a structural analysis of a fibrous composite component, it is

necessary to divide the structure into finite elements, one of which is shown in Fig. i. Point P
in element ABCDEFGH represents one of the Gaussian integration points at which the

29
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Finite
element'

_--Unitcellin
periodiccomposite

Fig. 1. Finite element and unit periodic cell.

constitutive response is used to generate the stiffness matrix of the finite element. Ideally,
it would be desirable to use elements that are much smaller than one of the unit cells,

QRST, of the periodic composite,- but this would tax computer resources. Instead, if the

volume-averaged, or homogenized, constitutive properties surrounding the Gaussian

integration point P can be calculated, these properties can be used to compute the stiffness

of the finite element in the structural analysis. Once the strain-temperature histories at the
damage critical locations of the structural component are established from the finite

element analysis, these histories can be imposed at the nodes in element ABCDEFGH and

used to determine the local stress-strain state in the typical unit periodic cell QRST by

means of a Fourier series or Green's function approach (Walker et al., 1989, 1990). As far
as the Gaussian integration point is concerned, the surface of the finite element is con-

sidered to be many unit cells away, so that the problem of determining the local fields

within the unit cell reduces to determining the response within a periodic cell of an infinite

lattice when the strain increment given by the finite element code is applied at infinity.

We therefore attack the problem in two ways.

First, a Fourier series or Green's function method is used to determine the

stress-strain variation throughout the unit cell, QRST, when a known strain increment,
say lXe°/, is applied to the nodes of the element ABCDEFGH. This is equivalent to the

problem of determining the local response at any point r within the unit cell of a periodic

lattice when the total strain increment, Ae°t, is applied at infinity. The local response at
any point r within the unit cell is obtained from the relation

Aekrt(r) = M_trs(r) Aer°, (1)

where Mkv,(r) represents the magnification or strain concentration factor that magnifies

the strain increment applied at the surface of the finite element--i.e, at its nodes--and

gives the strain increment at any point r in the unit periodic cell, QRST. The tensor mag-

nification factor Mkvs(r) is a complicated function of the geometry and constitutive
properties of the constituent materials comprising the unit periodic cell which has dif-

ferent, but mathematically equivalent, representations in the Fourier series and Green's
function approaches (Walker et al., 1989, 1990). Once the total strain increment Aekrt(r)

at any point r is known, the stress increment can be computed via Hooke's law in the form

AtTij (r) = DUk ! (r)(Ae_'l (r) - AekVt (r) - O_kl(r) A T(r)), (2)

where at the point r, Dijkl(r) is the elasticity tensor, AePt(r) is the inelastic strain increment,
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and otkt(r ) AT(r) is the thermal strain increment. The inelastic strain increment can be

computed explicitly at the point r because the stress is known as a function of position r

at the beginning of the increment. The overall, or homogenized stress increment, A_r°,
required for calculating the stiffness of the finite element, can then be obtained by volume

averaging over the unit cell in the form

Atr°=--_efff Aao(r)dV(r ), (3)
v_

where V_ denotes the volume of the unit ceil, QRST.

Second, once the homogenized stress increment, A,7 °, is calculated at each Gaussian

integration point in each finite element in the composite structure, the finite element

analysis will yield the strain-temperature histories at the damage critical locations. These

strain-temperature histories can then be applied incrementally to the finite element

ABCDEFGH containing the damage-critical Gauss point, and the Fourier series or Green's
function methods will yield the local variation of the total strain increment from (1).

It may thus be seen that the methods are used in a complementary fashion. First to

homogenize and obtain the overall macroscopic response of the composite, and then to

"zoom in" and calculate the local response in and around the fibers in a unit periodic cell.

In obtaining the overall homogenized response it is necessary to use rapid methods for

estimating the magnification tensor Mijkt(r), because this is used at each Gauss point of the
structure for each strain increment of the loading history. A much more accurate value of

the magnification tensor, Mok t(r), can be used in postprocessing the finite element results to
look at the local stress-strain variations throughout the unit cell.

2.1. Homogenized macroscopic equations

It is supposed that the periodic composite material is acted upon by an imposed strain

increment Ae °. and responds in bulk with a stress increment Ag °. These values are then

equated to the respective volume-averaged quantities in order to obtain the effective con-
stitutive relation for the composite material, i.e.

Aa o = VI v Atro(r ) dV(r) and Ae° = V v

where V is the volume of the body.

The volume-averaged or effective constitutive relation for the composite material can

be written (Walker et aL, 1989, 1990) as

l ff f [D_jktAckt(r)-dDokl(r)[Aerl(r)-Ackt(r)]JdV(r), (5)Ao° = o0 , °, -

where V_ is the volume of a unit periodic cell in the composite material, Ae_t(r) is the total

strain increment at point r in the periodic cell due to the imposed uniform total strain

increment Ae°t at the surface of the composite, and Ackt(r) is the strain increment at point
r in the periodic cell representing the deviation from isothermal elastic behavior, i.e.

Ackt(r) = Ae_t(r) + _kt(r)AT(r), (6)

where AeOn(r), c_kt(r ) and AT(r) are the plastic strain increment, the thermal expansion

coefficient, and the temperature increment at point r. The fourth-rank tensor &D0kt(r) is
defined by the relation

_Diskl(r ) = 0(r)(Df.kt - Dijm_t), (7)

where 0(r) 1 in the fiber and 0(r) 0 in the matrix, with f= = Dijk! denoting the elasticity

tensor of the fiber and D0mk_that of the matrix.
In the expression for the average or effective constitutive relation in (5), the quantities

0 m

Atkt, Dokt and fiDokt(r ) are given. The deviation strain increment Ackt(r ) can be obtained

throughout the periodic cell as a function of position r by using an explicit forward-

difference method because the stress and state variables in a viseoplastic formulation will
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be known functions of position at the beginning of the increment. Everything is therefore

known explicitly except the total strain increment Ae_t(r).

2.2. Fourier equation overview

In the Fourier series approach we find that the total strain increment is determined

by solving the integral equation (Walker et aL, 1989, 1990)

1 +ao /

Aekr,(r) = Ae°t + _ _ _ 2_ gkuj(;)
r/p=0

v¢

where the fourth-rank tensor gkru({) is given by

gklu(_) = ½((i_lM_X({) + _kMi';x(_)), i (9)

in which the Christoffel stiffness tensor Mu( _, with inverse M_l(_), is defined by the
relation (Barnett, 1972)

M,j(;) = D_jq_p_q , (I0)

with _'p = _r/_ = _p/_ being a unit vector in the direction of the Fourier wave vector

_, and _ = "_I-_,,_m denoting the magnitude of the vector 1_. In (8) the sum is taken over

integer values in which

2nn x 27rn2 2zcn3
_l = _, d_2= _, _3 = --, (11)

Ll L2 L3

and where L_, L2, L3 are the dimensions of the unit periodic cell in the x_, x2, x3 direc-
tions, so that V_ = L_L2L3. The values of nz, nz, n3 are given by

np= 0, +1, +2, +3 ..... etc., forp= 1,2,3, (12)

where the prime on the triple summation signs indicates that the term associated with

n_ = n2 = n3 = 0 is excluded from the sum.

2.3. Green's equation overview

In the Green's function approach the total strain increment Ae_t(r) is determined by

solving a different integral equation (Walker et al., 1989, 1990), viz.

x [Dm_, Acr_(r') - 6Dm_(r')[Ae_(r') - Ac.(r')]} dV(r'), (13)

where the fourth-rank tensor U_t,_(r - r') gives the k! component of the total strain

increment at point r due to the mn component of a stress increment applied at point r' in

the infinite matrix with elasticity tensor Dm_,, i.e,

1(02a,,,,,(r-r') - r,))U_tmn(r - r') = -_ \ OxtOxn + "_xk'O_nn ' (14)

and the volume integration in (13) extends over all the periodic cells in the composite

material, i.e. over the entire composite.

The Green's function tensor is defined by the Fourier integral (Barnett, 1971, 1972;

Mura, 1987)

Ill °° d3K ML_(_)e K(' '), (15)Gij(r - r') = _oo(2_r) 3

in which the vector _ is now defined by the relation if, = K/K with K = -,/KoKq denoting

the magnitude of the vector K = (Kl,/(2,/(3).
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By applying the Poisson sum formula, it has been shown (Walker et al., 1989, 1990)

that (8) and (13) are identical, although the summation extends over the integer values ns,

n2, n3 in (8) and extends over the periodic cells in (13).

2.4. Integration of the equations

Both (8) and (13) are implicit integral equations for the determination of the total

strain increment Aexrt(r), as this unknown quantity appears both on the left-hand sides of

the equations, and on the right-hand sides under the volume integrations.
The effective constitutive relation given in (5) and the total strain increment relation,

given by either (8) or (13), contain the volume integration of the deviation strain incre-

ment Ackz(r). In the periodic cell the deviation strain increment at any point r will be
determined from a unified viscoplastic constitutive relation (Lemaitre and Chaboche,

1990) appropriate to the constituent phase in which the point r resides. If a constituent

phase is included at the fiber-matrix interface, a constitutive relation can also be proposed
for this phase, and the resulting inelastic strain increment determined for inclusion in the

volume integrals. This may be important for metal matrix composites where there can be

chemical reactions between the fiber and the matrix at elevated temperatures, and for

composites where the fibers have been coated with a compliant layer to enhance the

overall composite properties.

Equations (5), (8) and (13) form the basic incremental constitutive equations for

determining the effective overall deformation behavior of a composite material with a

periodic microstructure. In order to update the stress state in each of the constituent

phases in preparation for integrating the effective constitutive relation over the next incre-
ment, the constitutive relation

A aij (r) = Dijkt (r)(A_t (r) - A ckt (r)), (16)

is used, where Dijkt(r) = D_kt or D_j_t according to whether the point r is in the fiber or

matrix. This relation is used to update the stress aiflr) and, in turn, the internal viscoplastic
state variables q_(r) at each point r in preparation for computing Ackt(r ) at the next
increment.

The derivation of the preceding equations and some methods for their solution are

discussed in Walker et al. (1989, 1990). Some numerical elastic solutions of the Fourier
series integral equation for Aekr_(r) are obtained in the remaining sections of the paper.

3. NUMERICAL SOLUTION OF INTEGRAL EQUATION

Determination of the stress and strain increments throughout the fibrous composite

material under isothermal elastic conditions requires the solution of the integral equation
(8), which reduces to the two-dimensional form

1 _, gklmn(_) e i_''(r-r')_D,.._(r') T ,= Atr,(r ) dS(r'), (17)

where A< = L_L2 is the area of the unit cell, and where the two-dimensional Fourier sum

ranges over the integer values n_ = 0, _+1, ..., ±oo and n2 = 0, ±I, ..., +0% with the
prime on the sum indicating the omission of the term in which n_ = n z = 0.

Nemat-Nasser and his colleagues (Nemat-Nasser and Taya, 1981 ; Nemat-Nasser et at.,

1982; Nemat-Nasser and Iwakuma, 1983; Iwakuma and Nemat-Nasser, 1983) have

demonstrated that good accuracy can be achieved by dividing the unit cell into a number

of subvolumes, where Ae_,(r') in the/3th subvolume integral is replaced by

Aef,(r') = Aer_f = Ae_r_(r') dS(r'), (18)
A_3

which corresponds to its average value in the Bth subvolume whose cross-sectional area

is A a .
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34 K.P. WALKER el al.

Let therebe N subvolumes in the unit ceil,with M subvolumes in the fiberand

N - M subvolumes in the matrix. Then the preceding integral equation can be written as

' Aer$ , (19)

Aekr,(r) = AeOt - _ _ _ gk...(;)e i_'" e -it'e dS(r') 6D_.,s r8
# = I JOAanp=O

where (_DSmnr$ -- Dfmtlrs - D_nrs or 0, according to whether the subvolume p is in the fiber

or matrix, respectively.
If we use Nemat-Nasser's notation and write

111 e/_,'r dS(r), (20)Q_(_)= _ A_

then the preceding equation may be written as

N :t:=o

' 8 i_,'r 8 8 T8
Aert(r) = Ae°t - _ _ _ gtt,,,.(() 5D,,,..s e f Q (-_) Ae.s, (21)

8= 1 np=O

where
f8 = __As (22)

Ac

is the volume fraction of the flth subvolume. We may now volume-average (21) over the

_th subvolume to obtain

N

AeOn" Aeot_ _ r8c_8 r8 (23)J '-'klrs Aers ,

8=1

where
+_

c_8 I
Sklr s .__ ££ gkt,..(_)SD_.r.Q_(%)Q_(-%), (24)

np = 0

which is akin to Eshelby's (1957) tensor for an ellipsoidal inclusion.

Now 5D,_,_, = 0 if the flth subvolume resides in the matrix, so that

_8 (25)Sklrs _- 0 for M < fl -< N.

Because only M unknowns (associated with the subvolumes in the fiber) are involved in

(23), we are left to solve
M

Ae_'_ = Ae°t -- 2 v¢SCc_f°klrsAerV for c_ = 1, 2, ..., M. (26)
8=1

When this relation is assembled columnwise for each fiber subvolume a, the solution

can be obtained by Gaussian elimination. However, the square matrix which results from

assembling these equations is of order 6M, and for a large number of subvolumes, M, may
pose storage problems on the computer. Instead, we solve the equations by an iterative

method.

w

_-?

= .

v

3.1. Magnification tensor

If we single out the ccth fiber subvolume on the right-hand side of (26), we can write

M

Ate; Ae°t f Skin Ae._ '_ E r_c,_s T_.... Ag.rs , (27)= -- J _Jklrs

t3=l

or, on rearranging,

:-e_,_, ,-' AtOm._ E fSs_n_n,sAz , (28)
AeOn'= [Ik,.,. + : ok,.,°_ . =_ /

8;ec_

for c_ = 1,2 ..... M, in which Ikt,,,. denotes the fourth-rank identity tensor. This equation

can now be solved by iteration in the form

(r .... - 1 o (29)= A_:,,,. - ,[At,t }×+, [I_t.,. + f S,t,,,.l fSsff,_..[Ae_flx

8=1 /
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until the (_ + l)th iterate differs insignificantly from the ),th iterate. If we take our starting
T/_ 0 TOguess as |Ae,s }0 = Aers, the first iterate [Aers h yields the Rayleigh-Born approximation

to the total strain increment. Continued iteration yields higher-order Rayleigh-Born

approximations which converge to the solution of (26). The necessity of separating the

dominant diagonal terms containing S_,% in (27) and taking them to the left-hand side of

the equation is required in order for the iterations to converge.
We may write

r_ (30){Aekt Ix+, = {F_tr, Ix Aer °,

where the operator [F_m]o is given by

..... (i, 3[Fklrs}O = [Iklpq + f Sxtpq] q_, _ ft_ , . (31)

O#_ I

The operator (I_]× can be obtained recursivelyfrom the relation

a ,,t_ ,_ (32),, a_ -I _ f S_qmnlFmn,sl x ,
[FktrslX+l = [IJctpq + f Sktpq qr_ t_ 1

B_ct

which is obtained by combining (29) and (30). The magnification tensor M_'us for the ath

fiber subvolume may then be written as

Mfft_ = lim [I'_t_,] ×, (33)
k_ao

and therefore the total strain increment in the _th subvolume is given by

Ae_ = M?,%Ae,°. (34)

Once the values of AekX}_ in the fiber (where 1 < _ _< M) are known, the values in the

matrix (where M < c_ _< 2V) can be found from (23). If further resolution is required, the

value of Ae_Rr)'at any point r in the unit cell can be found from (21).

3.2. Rectangular subvolumes

The iterative solution requires the evaluation of the tensor Sffl_, from (24). For

isotropic constituents the tensor gkzm,(O 6D_,r_ may be written from (9) and (10) in the
form

+ m/2

where ;t _,/a_ and 2m,/a m are the Lam6 constants for the flth subvolume and the matrix,

respectively, and

(i = _i for i = 1, 2 (36)
_/(2ztnl/Ll) 2 + (2yrn2/L2) _

is a unit vector in the direction of the Fourier wave vector _ = 2ztn_/L_ (no sum on i).
The remaining factor required for assembling _Sktr_ is the Laue interference integral

product, Q,,(_,)Qa(__,). For the ath and flth rectangular subvolumes whose sides are of

length L_', L_ and L_, L2_ in the x_, x z directions, we have

Q_'(_)Q_(-_) = cos[_(x_' - Xl_) + (z(x_' - x2_)l

sin(L_'_/2) sin(L_'_z/2) sin(L_(_/2) sin(L_2/2)

× (L?_',/2) (L_(z/2) (t_t/2) (L2_(z/2) ' (37)

where x_, x_ and x_, x_ are the coordinates for the centers of the ath and flth rectangular
subvolumes.
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36 K.P. WALKER et a:.

4. NUMERICAL EXAMPLES

Figure 2 shows the transverse stress concentration factors, a11, within the unit
periodic cell, when a W/Cu fibrous composite is loaded in the transverse direction with

an overall stress of a71 = 1000kPa. The tungsten fiber occupies a volume fraction

f = 9/49 = 0.184 in the unit cell of the composite, with Ew = 395 GPa, Vw = 0.28,

Ec, = 127GPa and Vcu = 0.34. Figure 2(a) presents a numerical tabulation of the
constant-valued stresses for each of the 49 square subvolumes. These results are presented

for those readers who desire to verify their own coding of this theory. Figure 2(b) is a

contour rendition of the 7 × 7 matrix of numbers given in Fig. 2(a). Although Fig. 2(a)

is a correct graphical interpretation of the subvolume results (i.e. the stress and strain

fields are uniform in each subvolume), the smoothing of these data in the form of con-

touring, as presented in Fig 2(b), is easier to interpret. A finer meshing than the 7 x 7

array considered throughout this paper would lead to less interpolation error inflicted by

the contouring algorithm.

The Fourier series approach--employing (5), (23), (24), (29), (35), (36) and (37)--is

used to calculate both the stress concentration throughout the unit cell and the

homogenized transverse elastic modulus. Within the unit cell, 9 subvolumes are used to

(al Top of unitcell

o
_r11_"

826 819 835 837 835 819 826

939 879 739 682 739 879 939

:::::::::::;::::;::::::::::::::::::::::

1131 1191 i1340 1392 1340 1191 1131

:.,.:,:,:,:.:.:.:.:.:.,.. .......
i:i:_:i:i:i;i:i:i:_:_:i:!:i:i:i:i:i:i:i:_:_l:_:i:i:i:i:i:i::?:3

1206 1210 1179! 1175 1179 1210 12061

1131 1191 !1340 1392 1340 1191 1131

939 879 739 682 739 879 939

826 819 835 837 835 819 826

o,0
11

Bottom of unit cell

(b) 7

0 1200 0
0"11K'- ,4 -- ( ) ")'°"11

1 2 3 4 5 6 7
Fig. 2. Transverse stress concentration, a_, for an applied transverse stress of o_ = 1000 kPa.

Each unit cell, with its 49 subvolumes, is embedded in a doubly-periodic array of identical cells.

The homogenized transverse Young's modulus is (E) = 156.3 GPa. (a) Numerical values for the
transverse stress of each subvolume. The nine shaded subvolumes in the center of the uni_ cell

represent a tungsten fiber embedded in 40 surrounding subvolumes representing the copper

matrix. (b) Contour plot of the transverse stress with a gradation of 100 kPa per contour. A

tungsten fiber is located at the intersection of columns 3, 4, 5 with rows 3, -_, 5.
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calculate the stress variation throughout the tungsten fiber, whilst 40 subvolumes are used

for the copper matrix. The stress concentration in the tungsten fiber varies from 1175 to
1392 kPa, with a volume average of 1297 kPa. In the copper matrix the stress concentra-
tion varies from a minimum of 682 kPa to a maximum of 1210 kPa. With 49 subvolumes

in the unit cell, the overall homogenized transverse elastic modulus is calculated to be

(E) = 156.3 GPa. It can be seen that the transverse stress in the square planform fiber

forms a ridge/valley in the direction of the transverse stress. The average stresses in the
ridges are 1340, 1392 and 1340 kPa, and the average stresses in the valley are 1179, 1175

and 1179 kPa. This behavior can be noticed in a similar problem where a cuboidal inclu-

sion in an infinite matrix suffers a uniform eigenstrain or transformation strain. The

problem is outlined on p. 107 of Mura's (1987) book "Micromechanics of Defects in

Solids". The ridge/valleys are present even when the fiber is isolated, and may be con-
trasted to the case of an isolated fiber with circular (or ellipsoidal) cross-section which, by

Eshelby's (1957) analysis, would possess a uniform stress distribution within the fiber.
A check on the transverse elastic modulus can be made by assuming that the unit cell

is comprised of four subvolumes, with one subvolume in the fiber and three subvolumes

in the matrix, as in Aboudi's (1987) model. Each subvolume is assumed to be a spring so

that the unit cell is assimilated to two springs connected in parallel. One spring in this

parallel arrangement consists of a fiber and matrix spring in series, whilst the other spring

in the parallel arrangement is a matrix spring. Taking account of the volume fraction of

each spring allows the homogenized transverse modulus to be written in the form

cry
(E> = Ec,(I - _ff + l _ q-f(l ---(EcjEw)) ) • (38)

Assuming the volume fraction of the tungsten fiber to bef = 9/49 gives (E) = 149.3 GPa

vs 156.3 GPa from the Fourier series calculation. Experiments carried out at NASA Lewis

Research Center (Verrilli, 1988) have given values of the transverse elastic modulus of

W/Cu composites as <E) = 136 _ 15 GPa at 9% volume fraction and (E) = 178 ± 15

GPa at 40°70 volume fraction. An interpolation gives <E) = 148 ± 15 GPa at a volume

fraction off = 9/49 = 18.4070.

Figure 3 shows the hydrostatic stress (_rt_ + o'zz + 0"33)/3 for the same transverse

loading condition. High hydrostatic stresses occur at the fiber/matrix interface perpen-

dicular to the direction of the loading axis. If the fiber had the same elastic moduli as the

matrix and the unit cell was elastically homogeneous, the average hydrostatic stress in

each subvolume would be 333 kPa. Tungsten/copper composites fail in thermomechani-
cal fatigue tests through grain boundary cavitation in the copper matrix near the interface,

7 •

0 ,_>,o. 0
°"11<'- 4 11

3

1 2 3 4 5 6 7

Fig. 3. Contour plot of the hydrostatic stress concentration, (cr_ + a22 + a33)/3 , for an applied

transverse stress of at°_ = 1000 kPa with a gradation of 50 kPa per contour. For a homogeneous

material the hydrostatic stress would be 333 kPa. A fiber is located at the intersection of columns
3, 4, 5 with rows 3, 4, 5. Each unit cell, with its 49 subvolumes, is embedded in a doubly-periodic

array of identical cells.
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0 ..]i. or101°"11'i- 4

ai- J I IQ_I

1 2 3 4 5 6 7

Fig. 4. Contour plot of the transverse stress concentration, a It , for an applied transverse stress of

a_l = 1000kPa with a gradation of 200 kPa per contour. A fiber is located at the intersection of.
columns 3, 4, 5 with rows 3, 4, 5, except the (5, 3) node which is a void. Each unit cell, with its

49 subvolumes, is embedded in a doubly-periodic array of identical cells.

I I I '1-11
1 2 3 4 5 6 7

Fig. 5. Contour plot of the transverse stress concentration, a t t, for an applied transverse stress of
a°t = 1000 kPa with a gradation of 300 kPa per contour. A fiber is located at the intersection of

columns 3, 4, 5 with rows 3, 4, 5, except the (5, 3) and (5, 4) nodes which are voids. Each unit cell,

with its 49 subvolumes, is embedded in a doubly-periodic array of identical ceils.

6

0 0
%_<- 4 -'>" o 11

1 2 3 4 5 6 7

Fig. 6. Contour plot of the transverse stress concentration, a==, for an applied transverse stress of

a°t = 1000kPa with a gradation of 200 kPa per contour. A fiber is located at the intersection of

columns 3, 4 with rows 3, 4, 5, and a void is located at the intersection of column 5 with rows 3, 4, 5.

Each unit cell with its 49 subvolumes, is embedded in a doubly-periodic array of identical cells.
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and by tensile overload of the tungsten fibers (Kim et al., 1989). High hydrostatic stresses

near the interface may be important for cavitation growth in the copper matrix, which is

an important creep rupture mechanism known to occur in copper.
It is also of interest to examine the redistribution of stress when one or more of the

nine subvolumes comprising the fiber is assumed to lose its load-carrying capacity,
thereby becoming a void. One corner subvolume is assumed to be a void in Fig. 4. The
transverse stress concentration in the rest of the fiber is now enhanced to compensate for

the loss in the load-carrying capacity of the void subvolume; in particular, the peak

stressed subvolume in Fig. 4 is 1800 kPa, compared with 1392 kPa in Fig. 2. Figures 5 and
6 show the stress redistribution when two and then three fiber subvolumes at the

fiber/matrix interface lose their load-carrying capacity. In these figures, the peak stressed

subvolumes are 2419 and 2040 kPa, respectively, with the latter occurring in the matrix,

as compared with a peak stress of 1392 kPa in Fig. 2. When viewed in sequence, Figs 4,
5 and 6 show how the transverse stress field could vary due to the growth of a fiber

debond or a crack. A finer meshing would permit a more detailed study of such flaws.

Although W/Cu composites have a strong thermodynamically-compatible bond at

the interface (i.e. there is no interspecies diffusion), it was thought worthwhile to

investigate the behavior under a transverse load when the interface is composed of a

degraded material, or perhaps is coated with a compliant layer of a third material.

Specifically, the central subvolume is assumed to be pure tungsten, and its eight nearest

neighbors are assumed to have elastic moduli that are the average of those for tungsten

and copper. The transverse stress concentration is shown in Fig. 7. The ridge/valley has

disappeared, but this is perhaps because only one subvolume is considered for the tungsten.

Also, the stress field of the unit cell is more uniform than that of Fig. 2, as expected.

6

5

°'014" 4

3

2

-.,o-O1

1 2 3 4 5 6 7

Fig. 7. Contour p[ot of the transverse stress concentration, aj_, for an applied transverse stress of

or°l = 1000kPa with a gradation of 50 kPa per contour. A fiber is located at the (4, 4) node. Its

eight nearest neighbors (an interface or compliant layer) comprise a material whose elastic moduli
are the average of those for tungsten and copper. Each unit cell, with its 49 subvolumes, is

embedded in a doubly-periodic array of identical cells.

5. CONCI.USIONS

A magnification tensor is derived using Fourier series techniques. This tensor trans-
•forms the far-field strain to the local strain of a constant-strained subvolume, which is

considered to deform elastically. A set of these subvolumes can be configured by the

analyst to construct a representation for the unit cell of a periodic composite. The Laue

interference integral associated with the geometry of a rectangular subvolume is given.

Numerical examples for a fibrous W/Cu composite are used to illustrate the theory.
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